Lecture 11
Async/Await

Concurrency Models

OS Threads

This is the concurrency model we have been Pros:
using so far. We spawn in a std: :thread,

which under the hood is an OS-level operation. e Simple to use

For small tasks (such as downloading a single i
file), spawning an entire thread seems overkill. e Each time we spawn a thread, there is a
performance cost (syscall, context switch)

fn get_two_sites() {
// Spawn two threads to do work.
let thread_one thread: :spawn(|| download("https://www.foo.com")):
let thread_two thread: :spawn(|| download("https://www.bar.com"));

// Wait for both threads to complete.
thread_one.join() .expect("thread one panicked"):
thread_two.join() .expect("thread two panicked"):

Coroutines (a.k.a. “Green Threads™)

This is the concurrency model used by Pros:

languages like Java, Python, Go, and Lua.
e Cheaper to spawn than OS threads

Instead of using OS-level threads, the language e Simple and easy to use

runtime supports the creation of cheap “fake”

threads. The runtime then decides which

‘thread” to execute at any given time. e Requires a language runtime, which is

unsuitable for a systems language
o Rust prefers “zero-cost abstractions”

Cons:

public class SingleThreadExample {
public static void main(String[] args) <
NewThread t = new NewThread() :
t.start();

Event-driven programming (callbacks)

This concurrency model is frequently seen in Pros:
JavaScript (although they also support
async/await syntax). e Very performant

It works by passing “callback functions” as Cons:

arguments. e Verbose, nonlinear control flow
e Hard to debug

function func() <
console.log("line 1");
setTimeout(() => {

console.log("line 2"):

}, 2000)
console.log("line 3");

b

func();

Async/await syntax

We introduce two new keywords:

e async
e .awailt

We use async to mark a function as
“asynchronous”, and we use .await to await
the execution of another async function (and do
other work in the meantime).

#[tokio: :main]
async fn main() -> Result<()> {

Pros:

e Writing asynchronous code “feels” like
writing synchronous code

Cons:

e Also requires a runtime (more later...)
e Leaky abstraction

let mut client = client::connect("127.0.0.1:6379") .await?;

client.set("hello", "world".into()).await?;
let result = client.get("hello").await?;
result={:?}", result);:

println! ("got value from the server;
Ok(())

Async/await

What does it mean for a function to be async?

Consider the following function:

async fn fetch(url: &str) -> Option<Response>:

What does it mean for a function to be async?

Consider the following function:

async fn fetch(url: &str) -> Option<Response>:

Suppose we call fetch:

let response = fetch("https://www.foo.com"):

What does it mean for a function to be async?

Consider the following function:

async fn fetch(url: &str) -> Option<Response>:

Suppose we call fetch:

let response = fetch("https://www.foo.com"):

What is the type of response?

let response: impl Future<Output = Option<Response>>

What does it mean for a function to be async?

Consider the following function: What is a Future?

async fn fetch(url: &str) -> Option<Response>: e It's like a “promise” of some future

value that does not yet exist.

Suppose we call fetch:

let response = fetch("https://www.foo.com"):

What is the type of response?

let response: impl Future<Output = Option<Response>>

What does it mean for a function to be async?

Consider the following function: What is a Future?
async fn fetch(url: &str) -> Option<Response>: e It's like a “promise” of some future

value that does not yet exist.

Suppose we call fetch:

How do we get the value of a Future?
let response = fetch("https://www.foo.com"):

e Weneedto .await it.

What is the type of response?

let response: impl Future<Output = Option<Response>>

Async/await syntax is a leaky abstraction

async fn app() {
let response = fetch("https://www.foo.com").await;

}

Async/await syntax is a leaky abstraction

async fn app() {
let response = fetch("https://www.foo.com").await;

}

In order to use .await...

Async/await syntax is a leaky abstraction

...we need to mark our function async

async fn app() {
let response = fetch("https://www.foo.com").await;

}

In order to use .await...

Implementation & Rationale

Why?

When we call . await, we don’t want to block Notice that Futureis a trait. That
the current thread. Therefore, we also need to means that each Future has its own
change the calling function to return a Future. state.

In reality, async functions are less like functions Each time we poll a future, it advances
and more like state machines built up by its state as much as possible (until the
composing together other async “state future is Ready).

machines” (i.e. functions).

pub trait Future { pub enum Poll<T> {
type Output; Ready (T),
Pending,
fn poll(...) -> Poll<Self: :Output>; }

So how do we actually call async code?

So the question remains, how do we call async functions? Eventually, we will need to call them
“synchronously” from our main function.

e Async functions actually return a Future<T>, when really we just care about the T
e We can’t getthe T by .awaiting it, because then we would need to make our function async

This is where executors come in.

At a high level, an executor intelligently calls poll on our Futures until they are Poll: :Ready. This is
the “runtime” component of async/await.

e Rust doesn’t actually provide any executor!
o Popular crates like tokio provide this (in fact, tokio is a de-facto standard)
e Inthis way, async/await syntax is a “zero-cost” abstraction (or at least low-cost)

How does the executor know when to poll futures?

This is managed by something called a Waker,
which provides a wake function that tells the
executor the future is ready to make progress }
(the details of this are not important).

async fn say_hello() {
println! ("Hello from say_hello"):

#[tokio: :main]
Importantly, futures will not make progress async fn main()
unless you .await them (“lazy” futures). This is say_hello(); _
in contrast to languages like JavaScript (which SRR AL QR el Rl U
has “eager” futures).

< rust-test cargo run
Finished "dev’ profile [unoptimized + debuginfo] target(s) in 0.01s
Running "target/debug/rust-test’

Hello from main

9 rust-testf]

Running Futures together

The nice thing about futures is that we can
compose them together to make new futures.

The join! macro lets us await on futures by
running them concurrently. It also implicitly calls
.await for you.

This is in contrast to awaiting the futures in
sequence, which would take 5 seconds instead
of 3 in this particular (contrived) instance.

- rust-test cargo run

use std::time: :Duration;
use tokio::join;

async fn say_hello_1() {
tokio: :time: :sleep(Duration::from_secs(2)).await;
println!("Hello from function 1");

async fn say_hello_2() {
tokio: :time: :sleep(Duration::from_secs(3)).await;
println!("Hello from function 2");

#[tokio: :main]
async fn main() {
join!(say_hello_1(), say_hello_2());

Compiling rust-test v0.1.0 (/home/alexander/rust-test)
Finished ‘dev' profile [unoptimized + debuginfo] target(s) in 0.55s
Running “target/debug/rust-test’

Hello from function 1
Hello from function 2
> rust-test]j

Other tokio features

Tokio has other ways of dealing with tasks and futures

e spawn lets you spawn “green threads”, although joining them requires the use of .await.
e try_join! lets you early return if an error is encountered from one of the Futures.
e select! returns the first branch that completes, rather than waiting for all of them.

Tokio also provides additional channels on top of std: :sync: :mpsc

tokio:
tokio:
tokio:
tokio:

:sync:
:sync:
:sync:
:sync:

:mpsc — same as standard library (multiple producer, single consumer)
:broadcast — multiple senders & receivers

:oneshot — used to send a single value from one sender to one receiver
:watch — a single sender send values to several receivers, only latest value kept

Considerations & Issues

Function coloring

Async/await is often considered a leaky abstraction. We can
call sync code from async code, but we cannot call async code
from sync code. Furthermore, it is bad practice to call blocking
sync code from async async, because then our executor gets
hung up, so we can’t do other work in the background.

There are three solutions to this dilemma:

1. Only use sync code (but then we don’t get async features)
2. Use only async code (but can’t call from a sync context)
3. Make two different versions of every function

This issue is illustrated to great effect in the popular article “What
Color is Your Function?” by Bob Nystrom.

What Color is Your Function?

I don’t know about you, but nothing gets me going in the morning quite like a
good old fashioned programming language rant. It stirs the blood to see
someone skewer one of those “blub” languages the plebians use, muddling
through their day with it between furtive visits to StackOverflow.

(Meanwhile, you and I, only use the most enlightened of languages. Chisel-sharp
tools designed for the manicured hands of expert craftspersons such as
ourselves.)

Of course, as the author of said screed, I run a risk. The language I mock could be
one you like! Without realizing it, I could have let the rabble into my blog,
pitchforks and torches at the ready, and my fool-hardy pamphlet could draw
their ire!

To protect myself from the heat of those flames, and to avoid offending your
possibly delicate sensibilities, instead, Ill rant about a language I just made up.
A strawman whose sole purpose is to be set aflame.

I know, this seems pointless right? Trust me, by the end, we’ll see whose face (or
faces!) have been painted on his straw noggin.

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

Two versions of the same code

Inevitably, we have landed on the third option, so we
end up with entire crates like async_std, which are
virtually identical to the standard library but every
function is “colored” with the async decorator.

Crate async_std E

1 Async version of the Rust standard library

Uiie
Ficie

CiSe
LS e

async_std::i0::Stdin;
std::io::Stdin;

async_std: :net: :TcpStream;
std: :net: :TcpStream;

source - [-]

async-std is a foundation of portable Rust software, a set of minimal and battle-tested shared abstractions for the broader Rust
ecosystem. It offers std types, like Future and Stream, library-defined operations on language primitives, standard macros, I/O

and multithreading, among many other things.

async-std is available from crates.io. Once included, async-std can be accessed in use statements through the path

async_std, asin use async_std::future.

Keyword generics

There have been efforts made to resolve this issue, such as the Keyword Generics Initiative, which
proposes the addition of 7async syntax to mark a function as “maybe async’.

The function can be used from both async and non-async contexts, where .await becomes a no-op. A
similar proposal is being made for a ?const keyword.

This could possibly solve the issue but there is also fear of increasing the complexity of the language. We
do not want to end up like C++, which has 97 different keywords and a conglomerate of features.

trait 2async Read {
?async fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
?async fn read_to_string(&mut self, buf: &mut String) -> Result<usize> { ... }

/// Read from a reader into a string.

?async fn read_to_string(reader: &mut impl ?async Read) -> std::io::Result<String> {
let mut string = String::new();
reader.read_to_string(&mut string).await?;
Ok(string)

https://blog.rust-lang.org/inside-rust/2023/02/23/keyword-generics-progress-report-feb-2023.html

Recursive async functions

What if we want to define an async function recursively? Could we run into problems?

Forgive the change in colorscheme...
async fn fibonacci(n: i32) -> i32 ({

match n {
0 => 0,
al | 2 =l

n => fibonacci(n - 1).await + fibonacci(n - 2).await,

Recursive async functions

What if we want to define an async function recursively? Could we run into problems?

To understand, we need to consider how async functions are implemented...

Forgive the change in colorscheme...
async fn fibonacci(n: i32) -> i32 ({

match n {
0 => 0,
al | 2 =l

n => fibonacci(n - 1).await + fibonacci(n - 2).await,

How is async fn implemented?

Unlike a regular function, an async function doesn’t necessarily run to completion.

Every time we write .await, we are creating a suspend point in the function. What actually happens
is that after the first .await, the function returns the Future object immediately.

That future object needs to “remember” the execution state of the function (local variables, etc.) so it
can resume when it gets polled.

We can think of it like a state machine (an enum).

async fn async_example(input: String) -> String {
println! ("entering async function...");
let intermediate_1 do_work(input).await;
let intermediate_2 = do_work(input).await;
let intermediate_3 do_work(input).await;
println! ("leaving async function...");

How is async fn implemented?

Unlike a regular function, an async function doesn’t necessarily run to completion.

Every time we write .await, we are creating a suspend point in the function. What actually happens
is that after the first .await, the function returns the Future object immediately.

That future object needs to “remember” the execution state of the function (local variables, etc.) so it
can resume when it gets polled.

We can think of it like a state machine (an enum).

async fn async_example(input: String) -> String {
println! ("entering async function...");
let intermediate_1 do_work(input).await;
let intermediate_2 = do_work(input).await;
let intermediate_3 do_work(input).await;
println! ("leaving async function...");

Recursive async functions

What if we want to define an async function recursively? Could we run into problems?

Diagnostics:
recursion in an async fn requires boxing
a recursive ‘async fn' call must introduce indirection such as 'Box::pin’ to avoid an infinitely sized

future [EQ733]

async fn fibonacci(n: i32) -> i32 {

match n {
0 => 0,
al | 2 =l

n => fibonacci(n - 1).await + fibonacci(n - 2).await,

Recursive async functions

What if we want to define an async function recursively? Could we run into problems?

Fixed by using Box : :pin (since Rust 1.77)

async fn fibonacci(n: i32) -> i32 {

match n {
0 => 0,
il | % =l

n => Box::pin(fibonacci(n - 1)).await + Box::pin(fibonacci(n - 2)).await,

Recursive async functions

What if we want to define an async function recursively? Could we run into problems?

Fixed by using Box : :pin (since Rust 1.77)

async fn fibonacci(n: i32) ->"i32 {

match n {
0 => 0,
2=

n => Box::pin(fibonacci(n - 1)).await + Box::pin(fibonacci(n - 2)) . /await,

Pinning

If we look at the real definition of the Future trait, we can see that the poll method doesn’t take as
argument &mut self, but rather Pin<&mut Self> (note the Context just references the Waker).

But what is P1n? Long story short, Pin<T> guarantees that T does not move in memory. This is stronger
than the guarantee that references make, because we prevent moving operations such as mem: : swap.
This is necessary for self-referential data structures, these are called “position-dependent”.

To do this, we define the convention that T is a pointer to some value (as opposed to the value itself), and
we prevent the user from directly manipulating that pointer.

pub trait Future {
type Output;

// Required method
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

Why do we need Pin?

In general, we cannot allow Future state machines to be moved in memory. This is because async code
can contain references.

Consider the example below. We need the ability to store the stack variable rx in our state machine,
which points to data in x. If we “move” our state machine, then the rx pointer points to invalid memory.

Most Futures don’t require this (namely ones that don'’t reference themselves, hence “in general”), so
there is a trait called Unpin which lets us access the underlying T from a Pin<T>. For example 132 would
implement Unpin, since it’'s not position-dependent.

async fn lifetimes() -> 132 {
let x = b5;
let rx = &X;

tokio: :time: :sleep(Duration::from_secs(2)).await;

let y = *rx;
b

Recursive async functions

What if we want to define an async function recursively? Could we run into problems?
Fixed by using Box : :pin (since Rust 1.77)

Why does this work?

e Memory for the recursive call gets allocated on the heap
Its memory location is stable, so we can safely take internal references in the recursive call

e Box: :pin conveniently creates a value of type Pin<Box<T>>

async fn fibonacci(n: i32) -> i32 {

match n {
0 => 0,
2=

n => Box::pin(fibonacci(n - 1)).await + Box::pin(fibonacci(n - 2)) . /await,

Semantic Properties

What does .await mean for our code?

In general, we can rely on the values of our local variables to

remain stable across time. fn main() {
Why?—Rust’s borrowing rules guarantee single ownership and ig:ﬁ § i ég’

exclusive mutable access. So it's impossible for some other
thread to overwrite the values of our local variables (unless we

N N do_some_stuff();
use interior mutability)

let sum = X + vy;
println!("x + y = {sum}"):
Important Realization: }

In the absence of any sharing between threads (via Mutex,
RwLock, channels, etc.), code that uses .await will always
produce the same result as the equivalent “synchronous” code.

That is, assuming we also don’'t use try_join! or select!.

Introducing nondeterminism in a controlled way

Most real-world code relies on some form of nondeterminism (often times this is desirable). This is done in
Rust by sprinkling in “interior mutability” types as we’ve discussed in prior lectures.

In single-threaded code, we have the property that shared mutable state remains unchanged until we
run .await. Essentially, all the code in between .await calls implicitly forms a critical section. (although
the compiler still makes us use a Mutex unless we are willing to use unsafe)

In multi-threaded code we have no such guarantee, since any async task can concurrently access
shared data. async/await syntax generally assumes that the code can be run in a multi-threaded
context, even if it might not be in practice. This is done to maintain safety and flexibility.

async fn task() {
// initialize to some value
let shared = Arc::new(Mutex::new(SharedData: :default()));

println! ("old value: {}", shared.lock().unwrap().value);
run_task(Arc: :clone(&shared)).await;

// value might have changed across the ".await' boundary
println! ("new value: {}", shared.lock().unwrap().value);

Only pay for what you use

Due to these limitations, Rust’'s async/await is very similar in effect to OS-level threading, just with nicer syntax,
plus the ability to wait on multiple tasks concurrently (try_join! , select!).

In principle, all code could be implicitly marked async, and it would behave the same, solving the function coloring
problem. Rust can’t do that however, because async carries a non-negligible performance cost. This is the kind of
tradeoff that a systems language like Rust has to make to be competitive with C/C++ on performance.

So when to use async?—It’'s generally more of a project-wide decision. Mixing async/await with synchronous
code is awful in practice (I've done it). But generally async is great for:

e Web servers
e |O-bound applications
e Highly parallel applications

Also consider the extent to which the libraries you're using support and/or require the use of async.

If you’re in a multithreaded context and the performance cost of OS-level threads is acceptable, they can be much
simpler to use and require less runtime support (since the kernel is responsible for “remembering” the execution
state of threads).

