
Lecture 10
Unsafe Rust

1

Rust’s promise to you
If you satisfy the Rust compiler, your program
will never exhibit undefined behavior

● Use after free
● Buffer overflow
● Data race
● Invalid reference

Rust programs are still free to encounter bad
(but safe!) behavior

● Deadlock
● Leak memory
● Overflow integers
● Abort the program
● Accidentally delete the database
● Panics

Bad, but manageable🚨Really bad🚨

2

Sometimes, safety is too restrictive
Example:

● Python is safe, but at the cost of terrible
performance. For performance critical
code, write it in C and call from python
○ import numpy as np

np.matmul(A,B)

● Java is safe, but base collections like
arrays can’t be implemented in the
language. They’re special-cased by the
compiler

The ergonomics/safety of calling between
languages is terrible

● type mismatches
● translating data representation
● etc.

💡 What if we could write safe
and unsafe code in the same
language?

3

Rust contains two languages
Safe Rust Unsafe Rust

4

Rust contains two languages
Safe Rust

● Everything we’ve done up to this point
● If it compiles, it’s safe
● You should spend as much time as

possible writing safe Rust

Unsafe Rust

● Safe Rust, plus additional powers
● Safe Rust’s guarantees don’t apply:

segfaults and data races could occur

How to do this?
Use unsafe Rust to build safe abstractions that
you can call from safe Rust

Mutex RefCell Vec 5

How to build safe abstractions on unsafe?
Two components

● Check to make sure the unsafe is valid
● Perform the unsafe

E.x. index into slice represented with raw
pointer

● Impossible to do in safe Rust; compiler
can’t verify size of allocation

6

fn get(slice: &mut [T], index: usize)
 -> Option<&mut T> {
 if self < slice.len() {
 // SAFETY: `index` is checked to be in bounds.
 unsafe { Some((slice.ptr + index).read()) }
 } else {
 None
 }
}

How to build safe abstractions on unsafe?
Two components

● Check to make sure the unsafe is valid
● Perform the unsafe

fn get(slice: &mut [T], index: usize)
 -> Option<&mut T> {
 if self < slice.len() {
 // SAFETY: `index` is checked to be in bounds.
 unsafe { Some((slice.ptr + index).read()) }
 } else {
 None
 }
}

7

E.x. index into slice represented with raw
pointer

● Impossible to do in safe Rust; compiler
can’t verify size of allocation

Aside: unsafe is poorly named
Unsafe blocks are not for causing undefined behavior

● Dereferencing null pointers is a bad idea regardless

Unsafe blocks are for doing things that the compiler can’t
verify are safe.

● Better names:
○ unchecked blocks
○ trust_me_this_is_right blocks

8

Why should you care about unsafe?
If the goal is to write unsafe Rust as little as
possible why should you care?

● You don’t have to! You can write lots of
functional, performant Rust code without
ever touching unsafe

However, if you want to implement a fast data
structure that others depend on, it’s worthwhile
to put in extra effort to implement optimizations
that require unsafe

● Vec
● Mutex
● Hashmap

9

Unsafe super powers
In unsafe Rust you can…

● Dereference raw pointers
● Access mutable global variables

That’s it! Importantly…

● Ownership still applies
● Reference rules still apply (mutability, validity)

Let’s look at examples of using these powers

10

Dereference raw pointers
References are like pointers, but more restrictive

● Can’t dangle (point to invalid memory)
● Can’t have multiple mutable references

What if we just want plain old pointers?

let address: usize = 0x00012345;

let ptr: *const i32 = address as *const i32;

unsafe {

 println!("Value at address: {}", *ptr);

}

let address: usize = 0x00000000;

let ptr: *mut i32 = address as *mut i32;

unsafe {

 *ptr = 42;

}

11

Dereference raw pointers
References are like pointers, but more restrictive

● Can’t dangle (point to invalid memory)
● Can’t have multiple mutable references

What if we just want plain old pointers?

let address: usize = 0x00012345;

let ptr: *const i32 = address as *const i32;

unsafe {

 println!("Value at address: {}", *ptr);

}

let address: usize = 0x00000000;

let ptr: *mut i32 = address as *mut i32;

unsafe {

 *ptr = 42;

}
Pointers…
● can point to invalid memory
● can be null
● are either mutable or const

12

Mutable globals
Mutating global variables is unsafe. Why? static mut counter: u32 = 0;

fn main() {

 counter = counter + 1;

}

13

error[E0133]: use of mutable static is unsafe and
requires unsafe function or block
--> globals.rs:4:15
 |
4 | counter = counter + 1;
 | ^^^^^^^ use of mutable static

Mutable globals
Mutating global variables is unsafe. Why?

● data races

static mut counter: u32 = 0;

fn main() {

 counter = counter + 1;

}

14

error[E0133]: use of mutable static is unsafe and
requires unsafe function or block
--> globals.rs:4:15
 |
4 | counter = counter + 1;
 | ^^^^^^^ use of mutable static
 = note: mutable statics can be mutated by multiple
threads: aliasing violations or data races will cause
undefined behavior

Mutable globals
How to fix with unsafe?

By convention: provide a SAFETY comment that
explains how you’ve manually verified that the
code in the unsafe block is safe.

static mut counter: u32 = 0;

fn main() {

 // SAFETY: this application

 // is single-threaded

 unsafe {

 counter = counter + 1;

 }

}

15

Unsafe functions
Based on the signature, what do you think is
the difference between these functions? Why
would you call one or the other?

impl Vec<T> {

 pub fn get(&self, index: usize) -> Option<&T>

 pub unsafe fn get_unchecked(&self, index: usize) -> &T

}

16

Unsafe functions
Based on the signature, what do you think is
the difference between these functions? Why
would you call one or the other?

impl Vec<T> {

 pub fn get(&self, index: usize) -> Option<&T>

 pub unsafe fn get_unchecked(&self, index: usize) -> &T

}

17

Out-of-bounds checks are required to
maintain safety. get_unchecked skips the
bounds check.

Unsafe functions
Functions marked unsafe don’t necessarily
use unsafe internally.

unsafe on a function means: “calling this
function correctly requires upholding
properties that the compiler cannot check for
you”

18

…

Unsafe functions come with a comment saying
what properties you need to uphold

Unsafe functions
Is there an inefficiency here?

19

fn sum(v: &Vec<usize>) -> usize {

 let mut counter = 0;

 for i in 0..v.len() {

 counter += v[i];

 }

 counter

}

Unsafe functions
Is there an inefficiency here? What’s an even better way to write this?

20

fn sum(v: &Vec<usize>) -> usize {

 let mut counter = 0;

 for i in 0..v.len() {

 counter += v[i];

 }

 counter

}

fn sum_unsafe(v: &Vec<usize>) -> usize {

 let mut counter = 0;

 for i in 0..v.len() {

 unsafe {

 counter +=

v.get_unchecked(i);

 }

 }

 counter

}

Unsafe functions

21

fn sum_iter(v: &Vec<usize>) -> usize {

 let mut counter = 0;

 for n in v.iter() {

 counter += n;

 }

 counter

}

No bounds check, no unsafe ✅

Unsafe traits
Unsafe function -> need to uphold special
properties to call this function

Unsafe trait -> need to uphold special
properties to implement this trait

22

Only two examples in the standard library

pub unsafe trait Send { }

pub unsafe trait Sync { }

Improper implementation of Send/Sync will cause
a data race, which is undefined behavior

Compiler can’t check these!

Comparison: PartialEq

But wait, other traits have additional properties
that need to be upheld?

23

pub trait PartialEq<Rhs> {

 fn eq(&self, other: &Rhs) -> bool;

 fn ne(&self, other: &Rhs) -> bool { ... }

}

Comparison: PartialEq

struct Id(u32)

impl std::cmp::PartialEq for Id {

 fn eq(&self, other: &Self) -> bool {

 self.0 == other.0

 }

 fn neq(&self, other: &Self) -> bool {

 self.0 == other.0

 }

} 24

pub trait PartialEq<Rhs> {

 fn eq(&self, other: &Rhs) -> bool;

 fn ne(&self, other: &Rhs) -> bool { ... }

}

Comparison: PartialEq

struct Id(u32)

impl std::cmp::PartialEq for Id {

 fn eq(&self, other: &Self) -> bool {

 self.0 == other.0

 }

 fn neq(&self, other: &Self) -> bool {

 self.0 == other.0

 }

}

// Requires PartialEq
let mut names = vec![Id(0), Id(1), Id(2)];
names.binary_search(&Id(1));

25

pub trait PartialEq<Rhs> {

 fn eq(&self, other: &Rhs) -> bool;

 fn ne(&self, other: &Rhs) -> bool { ... }

}

Because it’s safe to implement PartialEq, binary_search
can’t rely on the eq and neq being implemented properly

Unsafe traits
Rust could have UnsafePartialEq that is
unsafe to implement but allows code to rely on
the fact that eq/neq are implemented correctly

Why would having UnsafePartialEq as the
default equality trait be better or worse than
the current default?

26

Unsafe traits
Rust could have UnsafePartialEq that is
unsafe to implement but allows code to rely on
the fact that eq/neq are implemented correctly

Why would having UnsafePartialEq as the
default equality trait be better or worse than
the current default?

Pro:

PartialEq is implemented more often than it’s
consumed

● Not marking the trait unsafe makes
things easier for the implementer, but
harder for the consumer

Con:

Functions like binary_search might be
leaving performance on the table

27

Case Study: implementing Vec
Vec is implemented with unsafe code pub struct Vec<T> {

 ptr: *mut T,

 cap: usize,

 len: usize,

}

28ptr

Vec<u32>

length
capacity

For full tutorial, see the
Rustnomicon

pub fn push(&mut self, elem: T) {

 if self.len == self.cap { self.grow(); }

 unsafe {

 ptr::write(self.ptr.add(self.len), elem);

 }

 self.len += 1;

}

https://doc.rust-lang.org/nomicon/vec/vec.html
https://doc.rust-lang.org/nomicon/vec/vec.html

How is this better than C?
The standard library has lots of unsafe code, so
are Rust’s guarantees all a lie and we should go
back to using C?

No! Separating unsafe code greatly reduces
the set of code that needs to be manually
checked.

● When a segfault occurs, only need to
check for bugs in your unsafe code

29

How safe and unsafe interact
Safe code has to trust unsafe code implicitly

● e.g. all safe code can assume that Send
and Sync types are implemented properly

Unsafe code can’t trust safe code at all

● Unsafe code in BTreeMap can’t assume
that PartialEq is implemented properly

30

Writing unsafe code is hard
● You must be defensive

Zooming out
Undefined behavior: what happens when code
executes that violates certain rules, like reading
from uninitialized memory

Safe Rust: if the program compiles, no
undefined behavior will occur

unsafe block: allows writing code that
compiles, but might cause undefined behavior.

unsafe function: function that could cause
undefined behavior if you don’t check the
documentation to see what contracts you must
uphold

unsafe trait: trait that could cause undefined
behavior if you don’t check the documentation
to see what contracts your type must uphold

31

Unsafe is hard: panic safety
New trick: panics can be caught

Works similar to try/catch in other languages,
but shouldn’t be used that way

let result = panic::catch_unwind(|| {

 panic!("oh no!");

});

assert!(result.is_err());

32

Panic safety: if your code panics but the panic is
caught, are data structures left in a valid state?

Unsafe is hard: panic safety
pub fn push(&mut self, elem: T) {

 self.len += 1;

 if self.len == self.cap { self.grow(); }

 unsafe {

 ptr::write(self.ptr.add(self.len), elem);

 }

}

33

Panic safety: if your code panics but the panic is
caught, are data structures left in a valid state?

Is this code panic safe?

Unsafe is hard: panic safety
pub fn push(&mut self, elem: T) {

 self.len += 1;

 if self.len == self.cap { self.grow(); }

 unsafe {

 ptr::write(self.ptr.add(self.len), elem);

 }

}

34

Panic safety: if your code panics but the panic is
caught, are data structures left in a valid state?

Is this code panic safe?

No! If grow() panics, the length has been
incremented but no new element has been added

Unsafe is hard: panic safety
pub fn push(&mut self, elem: T) {

 self.len += 1;

 if self.len == self.cap { self.grow(); }

 unsafe {

 ptr::write(self.ptr.add(self.len), elem);

 }

}

35

Panic safety: if your code panics but the panic is
caught, are data structures left in a valid state?

Is this code panic safe?

No! If grow() panics, the length has been
incremented but no new element has been added

How would we implement Vec
without unsafe? Do we need to

worry about panic safety?

Unsafe is hard: pointer vs. reference
Raw pointers can dangle: point to invalid
memory

Even in unsafe, references can’t dangle

impl Vec<T> {

 pub unsafe fn get_unchecked(&self, index:

usize) -> &T

}

fn main() {

 let v: Vec<u32> = Vec::new();

 let first: *const u32 = unsafe {

 v.get_unchecked(0) as *const u32

 };

}

36

Is this code allowed?

Raw pointers can dangle: point to invalid
memory

Even in unsafe, references can’t dangle

37

Bottom line: writing unsafe is hard,
what can we do about it?

No! get_unchecked produces a
dangling reference, even if it’s
immediately converted to a pointer

impl Vec<T> {

 pub unsafe fn get_unchecked(&self, index:

usize) -> &T

}

fn main() {

 let v: Vec<u32> = Vec::new();

 let first: *const u32 = unsafe {

 v.get_unchecked(0) as *const u32

 };

}

Is this code allowed?

Unsafe is hard: pointer vs. reference

Normal Rust compilation
Idea:

When testing, instead of running assembly, run
the intermediate representation and check for
bugs

38

Source Code

Intermediate
Representation

Assembly

Very easy to analyze
● Type information
● Lifetimes

Hard to analyze, fast to run
● Just reasons about bytes
● No lifetimes or types

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=b634f495eb0bc354ad6f50e858779e78

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=b634f495eb0bc354ad6f50e858779e78

MIRI
A tool that detects undefined behavior while
Rust code runs

Slow to run, so only run your code with MIRI
during development

How MIRI works:

Run Rust code in a sandbox

● Track allocation sizes, lifetimes, etc.

If unsafe code causes undefined behavior, print
an error.

39

Real bugs in standard library found with MIRI
● Debug for vec_deque::Iter accessing uninitialized memory
● Vec::into_iter doing an unaligned ZST read
● From<&[T]> for Rc creating a not sufficiently aligned reference

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=b4ca5b55b0c881a3cad3488be9054387

https://github.com/rust-lang/rust/issues/53566
https://github.com/rust-lang/rust/pull/53804
https://github.com/rust-lang/rust/issues/54908
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=b4ca5b55b0c881a3cad3488be9054387

Final Project Ideas
Graphical applications

● Chat app (project 3 as a starting point)
● Music player, Code editor, Video game

Open source contributions

● Build a data structure using unsafe and
publish it to crates.io

● Implement data science functions in Rust,
then allow them to be called from Python and
publish the library

● A blazing fast command line tool
Challenging projects from other domains

● Ray tracer, garbage collector, compiler, database, load
balancer, consensus algorithm, file system, scheduler

Last year’s projects

Command-line apps

● Stock tracker, git client,

Games

● Rhythm game, tetris, multiplayer

Graphical apps

● file manager

Other

● Load balancer
● scipy

40

Misc.

● Write a smart contract in Rust on the Solana blockchain
● Run Rust in the browser using WebAssembly
● Run Rust on Arduino using no_std

https://github.com/emilk/egui
https://bevyengine.org/
http://crates.io
https://github.com/PyO3/maturin
https://github.com/BurntSushi/ripgrep
https://www.anchor-lang.com/docs/high-level-overview
https://rustwasm.github.io/docs/book/
https://docs.rust-embedded.org/book/intro/no-std.html

Previous Projects

41

Command-line apps

● stock tracker, git client

Games

● rhythm game, tetris, multiplayer game

Graphical apps

● file manager

Other

● load balancer
● scipy

