Lecture 10

Unsafe Rust

Rust’s promise to you

If you satisfy the Rust compiler, your program
will never exhibit undefined behavior

Use after free
Buffer overflow
Data race
Invalid reference

&3 Really bad &

Rust programs are still free to encounter bad
(but safe!) behavior

Deadlock

Leak memory

Overflow integers

Abort the program

Accidentally delete the database
Panics

Bad, but manageable

Sometimes, safety is too restrictive

Example: The ergonomics/safety of calling between

. . languages is terrible
e Python is safe, but at the cost of terrible

performance. For performance critical e type mismatches
code, write it in C and call from python e translating data representation
@) import numpy as np o etc.

np.matmul (A, B)

e Java is safe, but base collections like

arrays can't be implemented in the , .
language. They're special-cased by the ¢ What if we could write safe
guage. Y P Y and unsafe code in the same

compiler language?

Rust contains two languages

Safe Rust Unsafe Rust

Rust contains two languages

Safe Rust Unsafe Rust
e Everything we've done up to this point e Safe Rust, plus additional powers
If it compiles, it's safe e Safe Rust’s guarantees don’t apply:
e You should spend as much time as segfaults and data races could occur
possible writing safe Rust

How to do this?

Use unsafe Rust to build safe abstractions that
you can call from safe Rust

| T

Mutex

RefCell

Vec

How to build safe abstractions on unsafe?

Two components

® Check to make sure the unsafe is valid
e Perform the unsafe

E.x. index into slice represented with raw
pointer

e Impossible to do in safe Rust; compiler
can’t verify size of allocation

fn get(slice: &mut [T], index: usize)
-> Option<&mut T> {
if self < slice.len() {
// SAFETY: “index 1is checked to be in bounds.
unsafe { Some((slice.ptr + index).read()) }
} else {
None

How to build safe abstractions on unsafe?

Two components

® (Check to make sure the unsafe is valid
e Perform the unsafe

E.x. index into slice represented with raw
pointer

e Impossible to do in safe Rust; compiler
can’t verify size of allocation

fn get(slice: &mut [T], index: usize)
-> Option<&mut T> {
if self < slice.len() {
// SAFETY: “index 1is checked to be in bounds.
unsafe { Some((slice.ptr + index).read()) }
} else {
None

Aside: unsafe is poorly named

Unsafe blocks are not for causing undefined behavior
e Dereferencing null pointers is a bad idea regardless

Unsafe blocks are for doing things that the compiler can’t
verify are safe.

e Better names:
o unchecked blocks
o trust_me_this_is_right blocks

why should you care about unsafe?

However, if you want to implement a fast data
structure that others depend on, it's worthwhile
. to put in extra effort to implement optimizations
e You don't have to! You can write lots of ,
_ _ that require unsafe
functional, performant Rust code without

ever touching unsafe

If the goal is to write unsafe Rust as little as
possible why should you care?

e \ec
e Mutex
e Hashmap

Unsafe super powers

In unsafe Rust you can...

e Dereference raw pointers
e Access mutable global variables

That's it! Importantly...

e Ownership still applies
e Reference rules still apply (mutability, validity)

Let’s look at examples of using these powers

10

Dereference raw pointers

References are like pointers, but more restrictive

e Can’'t dangle (point to invalid memory)
e Can’t have multiple mutable references

What if we just want plain old pointers?

let address: usize = 0x00012345;
let ptr: *const 132 = address as *const 132;
unsafe {

println! ("Value at address: {}'", *ptr);

let address: usize = 0x00000000;
let ptr: *mut 132 = address as *mut 132;
unsafe {

*ptr = 42;

11

Dereference raw pointers

References are like pointers, but more restrictive

e Can’'t dangle (point to invalid memory)
e Can’t have multiple mutable references

What if we just want plain old pointers?

Pointers...
e can point to invalid memory
e can be null
e are either mutable or const

let address: usize = 0x00012345;
let ptr: *const 132 = address as *const 132;
unsafe {

println! ("Value at address: {}'", *ptr);

let address: usize = 0x00000000;
let ptr: *mut 132 = address as *mut 132;
unsafe {

*ptr = 42;

12

Mutable globals

Mutating global variables is unsafe. Why? static mut counter: u32 = 0;
fn main () {
counter = counter + 1;

error[E0133]: use of mutable static is unsafe and
requires unsafe function or block
--> globals.rs:4:15
|
4 | counter = counter + 1;
| Annanan use of mutable static

13

Mutable globals

Mutating global variables is unsafe. Why? static mut counter: u32 = 0;

e dataraces fn main () {

counter = counter + 1;

error[E0133]: use of mutable static is unsafe and
requires unsafe function or block
--> globals.rs:4:15

I
4 | counter = counter + 1;

| AAnnannr use of mutable static
= note: mutable statics can be mutated by multiple
threads: aliasing violations or data races will cause
undefined behavior

Mutable globals

How to fix with unsafe? static mut counter: u32 = 0;

By convention: provide a SAFETY comment that ,
fn main () {

explains how you’ve manually verified that the , , ,
// SAFETY: this application

code in the unsafe block is safe.
// is single-threaded

unsafe {

counter = counter + 1;

free()
The free() function frees the memory space pointed to by ptr, which must

have been returned by a previous call to malloc() or related functions.

Otherwise, or if ptr has already been freed, undefined behavior occurs.
If ptr is NULL, no operation is performed.

15

Unsafe functions

Based on the signature, what do you think is
the difference between these functions? Why
would you call one or the other?

impl Vec<T> {

pub fn get(&self, index: usize) -> Option<&T>

pub unsafe fn get unchecked(&self,

index:

usize)

-> &T

16

Unsafe functions

Based on the signature, what do you think is
the difference between these functions? Why
would you call one or the other?

Out-of-bounds checks are required to
maintain safety. get_unchecked skips the
bounds check.

impl Vec<T> {
pub fn get(&self, index: usize) -> Option<&T>

pub unsafe fn get unchecked(&self, index: usize)

-> &T

17

Unsafe functions

Functions marked unsafe don’t necessarily Unsafe functions come with a comment saying
use unsafe internally. what properties you need to uphold

unsafe on a function means: “calling this
function correctly requires upholding
properties that the compiler cannot check for

”

you

[-] pub unsafe fn get _unchecked<I>(

Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

free()
The free() function frees the memory space pointed to by ptr, which must

have been returned by a previous call to malloc() or related functions.

Otherwise, or if ptr has already been freed, undefined behavior occurs.
If ptr is NULL, no operation is performed.

18

Unsafe functions

Is there an inefficiency here?

fn sum(v: &Vec<usize>) -> usize {
let mut counter = 0;
for 1 in O..v.len () {
counter += vI[i];

}

counter

19

Unsafe functions

Is there an inefficiency here?

fn sum(v: &Vec<usize>) -> usize {
let mut counter = 0;
for 1 in O..v.len () {
counter += vI[i];
}

counter

What's an even better way to write this?

fn sum unsafe (v: &Vec<usize>) -> usize
let mut counter = 0;
for i in 0O..v.len() {
unsafe {
counter +=
v.get unchecked (1)

}

counter

{

20

Unsafe functions

fn sum iter (v: &Vec<usize>) -> usize {
let mut counter = 0;
for n in v.iter () {

counter += n;

counter

No bounds check, no unsafe (%4

21

Unsafe traits

Unsafe function -> need to uphold special Unsafe trait -> need to uphold special
properties to call this function properties to implement this trait

Only two examples in the standard library

pub unsafe trait Send { }

pub unsafe trait Sync { }

Improper implementation of Send/Sync will cause
a data race, which is undefined behavior

Compiler can’t check these!

22

Comparison: PartialEqg

pub trait PartialEg<Rhs> {

fn eg(&self, other: &Rhs) -> bool;

fn ne(&self, other: &Rhs) -> bool { ... }
}

Implementations must ensure that eq and ne are consistent with each other:

e a != bifandonlyif ! (a == b).

But wait, other traits have additional properties
that need to be upheld?

23

Comparison: PartialEqg

pub trait PartialEg<Rhs> {

fn eg(&self, other: &Rhs) -> bool;

fn ne(&self, other: &Rhs) -> bool { ... }
}

Implementations must ensure that eq and ne are consistent with each other:

e a != bifandonlyif ! (a == b).

struct Id(u32)
impl std::cmp::PartialEq for Id {
fn eg(&self, other: &Self) -> bool {
self.0 == other.0
}
fn neg(&self, other: &Self) -> bool {
self.0 == other.0

24

Comparison: PartialEqg

pub trait PartialEg<Rhs> {

fn eg(&self, other: &Rhs) -> bool;

fn ne(&self, other: &Rhs) -> bool { ... }
}

Implementations must ensure that eq and ne are consistent with each other:

e a != bifandonlyif ! (a == b).

struct Id(u32) // Requires PartialEq
impl std::cmp::PartialEq for Id { let mut names = vec![Id(0), Id(1), Id(2)];
fn eg(&self, other: &Self) -> bool { names.binary_search(&Id(1));
self.0 == other.0
}
fn ned

s Because it's safe to implement PartialEq, binary_search
) can’'t rely on the eq and neq being implemented properly

25

Unsafe traits

Rust could have UnsafePartialEq thatis
unsafe to implement but allows code to rely on
the fact that eg/neq are implemented correctly

Why would having UnsafePartialEq as the
default equality trait be better or worse than
the current default?

26

Unsafe traits

Rust could have UnsafePartialEq thatis
unsafe to implement but allows code to rely on
the fact that eg/neq are implemented correctly

Why would having UnsafePartialEq as the
default equality trait be better or worse than
the current default?

Pro:

PartialEq is implemented more often than it’s
consumed

e Not marking the trait unsafe makes
things easier for the implementer, but
harder for the consumer

Con:

Functions like binary_search might be
leaving performance on the table

27

Case Study: implementing Vec

Vec is implemented with unsafe code pub struct Vec<T> {
ptr: *mut T,
cap: usize,

len: usize,

For full tutorial, see the)
Rustnomicon

pub fn push (&mut self, elem: T) {
if self.len == self.cap { self.grow(); }
unsafe {
ptr::write (self.ptr.add(self.len), elem);
length }
P A N capachy self.len += 1;

r N\ }

Vec<u32>

A} :

https://doc.rust-lang.org/nomicon/vec/vec.html
https://doc.rust-lang.org/nomicon/vec/vec.html

How is this better than C?

The standard library has lots of unsafe code, so
are Rust’s guarantees all a lie and we should go
back to using C?

No! Separating unsafe code greatly reduces
the set of code that needs to be manually
checked.

e When a segfault occurs, only need to
check for bugs in your unsafe code

29

How safe and unsafe interact

Safe code has to trust unsafe code implicitly Unsafe code can’t trust safe code at all
e e.g. all safe code can assume that Send e Unsafe code in BTreeMap can’t assume
and Sync types are implemented properly that PartialEq is implemented properly

Writing unsafe code is hard
e You must be defensive

30

Zooming out

Undefined behavior: what happens when code
executes that violates certain rules, like reading
from uninitialized memory

Safe Rust: if the program compiles, no
undefined behavior will occur

unsafe block: allows writing code that
compiles, but might cause undefined behavior.

unsafe function: function that could cause
undefined behavior if you don’t check the
documentation to see what contracts you must
uphold

unsafe trait: trait that could cause undefined
behavior if you don’t check the documentation
to see what contracts your type must uphold

31

Unsafe is hard: panic safety

New trick: panics can be caught

Works similar to try/catch in other languages,
but shouldn’t be used that way

Panic safety: if your code panics but the panicis
caught, are data structures left in a valid state?

let result = panic::catch unwind(] |
panic!("oh no!");
b

assert!(result.is err());

{

32

Unsafe is hard: panic safety

pub fn push (&mut self, elem: T) {
self.len += 1;
if self.len == self.cap { self.grow(); }

unsafe {

ptr::write(self.ptr.add(self.len), elem);

Panic safety: if your code panics but the panicis)
caught, are data structures left in a valid state?

|s this code panic safe?

33

Unsafe is hard: panic safety

pub fn push (&mut self, elem: T) {
self.len += 1;

if self.len == self.cap { self.grow(); {}

unsafe {

ptr::write(self.ptr.add(self.len), elem);

Panic safety: if your code panics but the panicis)
caught, are data structures left in a valid state?

|s this code panic safe?

No! If grow() panics, the length has been
incremented but no new element has been added

34

Unsafe is hard: panic safety

pub fn push (&mut self, elem: T) {
self.len += 1;

if self.len == self.cap { self.grow(); {}

unsafe {

ptr::write(self.ptr.add(self.len), elem);

Panic safety: if your code panics but the panic is) How would we implement Vec

caught, are data structures left in a valid state? without unsafe? Do we need to
worry about panic safety?

|s this code panic safe?

No! If grow() panics, the length has been
incremented but no new element has been added -

Unsafe is hard: pointer vs. reference

Raw pointers can dangle: point to invalid impl Vec<T> {

memory pub unsafe fn get unchecked(&self, index:
usize) -> &T

Even in unsafe, references can’'t dangle }
fn main() {

let v: Vec<u32> = Vec::new();
let first: *const u32 = unsafe {

v.get unchecked(0) as *const u32

}

Is this code allowed?

36

Unsafe is hard: pointer vs. reference

Raw pointers can dangle: point to invalid
memory

Even in unsafe, references can’'t dangle

No! get_unchecked produces a
dangling reference, even if it's
immediately converted to a pointer

Bottom line: writing unsafe is hard,
what can we do about it?

impl Vec<T> {

pub unsafe fn get unchecked(&self, index:

usize) -> &T

}

fn main() {

let v: Vec<u32> = Vec::

new() ;

let first: *const u32 = unsafe {

v.get unchecked(0)

}

Is this code allowed?

as *const u32

37

Normal Rust compilation

Source Code

Intermediate
Representation

Assembly

Very easy to analyze
e Type information
e Lifetimes

Hard to analyze, fast to run
e Justreasons about bytes
e No lifetimes or types

|ldea:

When testing, instead of running assembly, run
the intermediate representation and check for

bugs

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&qist=b634f495eb0bc354ad6f50e858779e78

38

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=b634f495eb0bc354ad6f50e858779e78

MIRI

A tool that detects undefined behavior while How MIRI works:

Rust code runs _
Run Rust code in a sandbox

Slow to run, so only run your code with MIRI . _ o
: e Track allocation sizes, lifetimes, etc.
during development

If unsafe code causes undefined behavior, print

an error.

Real bugs in standard library found with MIRI
e Debug for vec_deque:lter accessing uninitialized memory
e Vecuinto_iter doing an unaligned ZST read
e From<&[T]> for Rc creating a not sufficiently aligned reference

39

https://github.com/rust-lang/rust/issues/53566
https://github.com/rust-lang/rust/pull/53804
https://github.com/rust-lang/rust/issues/54908
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=b4ca5b55b0c881a3cad3488be9054387

Final Project Ideas

[J
Graphical applications
[J
e Chat app (project 3 as a starting point)
e Music player, Code editor, Video game
[J

Challenging projects from other domains

e Ray tracer, garbage collector, compiler, database, load
balancer, consensus algorithm, file system, scheduler

Misc.

e \Write a smart contract in Rust on the Solana blockchain

e Run Rust in the browser using WebAssembly
e Run Rust on Arduino using no_std

Open source contributions

Build a data structure using unsafe and
publish it to crates.io

Implement data science functions in Rust,
then allow them to be called from Python and
publish the library

A blazing fast command line tool

Last year’s projects
Command-line apps
e Stock tracker, git client,
Games
e Rhythm game, tetris, multiplayer

Graphical apps 40

https://github.com/emilk/egui
https://bevyengine.org/
http://crates.io
https://github.com/PyO3/maturin
https://github.com/BurntSushi/ripgrep
https://www.anchor-lang.com/docs/high-level-overview
https://rustwasm.github.io/docs/book/
https://docs.rust-embedded.org/book/intro/no-std.html

Previous Projects

Command-Lline apps
e stock tracker, git client
Games
e rhythm game, tetris, multiplayer game
Graphical apps
e file manager
Other

e load balancer
® scipy

41

