Data race

Multiple accesses with at least one writer

Thread 1:

for (int i = 0; i < INCREMENTS; i++) {
int cur_count = counter;
int new count = cur count + 1;
counter = new count;

}

Theaad D

cur_count <- 11

Assumes that in a single time-step we can
only do either load, increment, or store

CUur _GCoerrre

time new_count <- 12

counter <- 12

new_count <- 12

counter <- 12)

Atomics

Atomics: uninterruptible arithmetic
instructions
(implemented by CPU)

time

Thread 1:

for (int 1 = 0; 1 < INCREMENTS; 1i++)
int cur_count = counter;
int new count = cur count + 1;

counter = new count;

}

Thread 2:

cur_count <- 11; new_counter <-
12; counter <- 12

cur_count <- 12; new_counter <-
13; counter <- 13

Atomics vs. Mutexes

Why not use atomics always? struct MultiThreadVec {
Mutex mutex;

. . . , std: :vector<int> vec;
for (int i = 0; 1 < INCREMENTS; i++) {

atomic add(&counter, 1)

}
void push(MultiThreadVec v, int n) {

v.mutex.lock();
v.vec.push_back(n);
v.mutex.unlock();

Resizing a vector is complicated! Can’'t use an
atomic, as the vector potentially needs to be
resized via copying

Misc. PLQ Answers

Would it be possible for the compiler to detect when Rc vs. Arc are required (e.g., give atomicity
guarantees but optimize in the single-threaded case)?”

e Sort of! In C/C++, if you use mutexes in your code but don’t link to the threads library, the mutex
functions do nothing. Rust could do something similar, but doesn’t

“Does Rust also have an equivalent to forking a process?”

e No! Forking could potentially violate safety (why?)

(https://internals.rust-lang.org/t/why-no-fork-in-std-process/13770)
e Also, fork doesn’t exist on Windows and Rust attempts to be cross-platform

https://internals.rust-lang.org/t/why-no-fork-in-std-process/13770

Lecture 9

Message Passing

Mutex poisoning

Mutex locking returns an Option. Why?

impl<T> Mutex<T> {
pub fn lock(&self) -> Option<MutexGuard<' , T>> {
// omitted

If a thread panics while holding a Mutex, the mutex
is “poisoned” instead of automatically unlocked.

Locking a poisoned mutex returns None

https://doc.rust-lang.ora/src/std/sync/mutex.rs.htmi#315-320

https://doc.rust-lang.org/src/std/sync/mutex.rs.html#315-320

Mutex poisoning

fn pay salaries(accounts: Mutex<Accounts>) {
let mut accounts = accounts.lock() .unwrap()

let employees = accounts.employees();

for account in employees {
account += 1000;

}

accounts.corporate() —-= 1000 * employees.len();

}

Mutex poisoning

fn pay salaries(accounts: Mutex<Accounts>) {
let mut accounts = accounts.lock() .unwrap()

let employees = accounts.employees();

for account in employees {

account += 1000;

}

accounts.corporate() —-= 1000 * employees.len();

When a thread panics while holding a mutex,
application-specific invariants may not be upheld.

Mutex poisoning

fn pay salaries(accounts: Mutex<Accounts>) {
let mut accounts = accounts.lock() .unwrap()

let employees = accounts.employees();

for account in employees {

account += 1000;

}

accounts.corporate() —-= 1000 * employees.len();

When a thread panics while holding a mutex,
application-specific invariants may not be upheld.

why Send and Sync

C uses pthread_create to spawn a new
thread with the exact same stack, but this is
immediately unsafe! We have two mutable
references to every value.

Instead, we want the new thread to have access
to nothing, and then only allow sharing values
that we know are multithreading safe.

Send: it's ok to move this value to another
thread (the original thread can no longer access
it)

Sync: it's ok to share this value between
threads (both can access it)

10

More practice with Send + Sync

https://stackoverflow.com/questions/59428096/
understanding-the-send-trait

11

https://stackoverflow.com/questions/59428096/understanding-the-send-trait
https://stackoverflow.com/questions/59428096/understanding-the-send-trait

Case Study: spawning threads

See spawn directory in lecture code

Collatz conjecture

Consider the following operation on an arbitrary positive integer:

« If the number is even, divide it by two.

« If the number is odd, triple it and add one.

Does this process reach 1 for every starting
number?

12

A preview of next week

So far, we've seen some Rust guarantees that
hold about all programs at all moments during
execution

References are never null
e References point to alive values
e A value has at most one mutable
reference pointing at it

e Values won’t be dropped multiple times
e Values can’t be accessed after being
moved

e Non-thread-safe values can’t be sent
between threads

These guarantees have nice results:

e Rust programs never segfault
Rust programs never have data races
e Rust programs never exhibit undefined
behavior

For no performance penalty!

13

A preview of next week

So far, we've seen some Rust guarantees that
hold about all programs at all moments during
execution

Can’t prove these properties to the compiler?
Use dynamic checks

Rc
RefCell
Arc
Mutex

but there’'s a performance cost

14

A preview of next week

So far, we've seen some Rust guarantees that
hold about all programs at all moments during
execution

Sometimes the program is valid, but

e we can't prove it to the compiler
e we don't want a performance penalty

For example, implementing Vec

What to do?

15

Unsafe Rust

Temporarily disable some of Rust’s safety
checks

e e.g. allows using raw pointers

Use unsafe to build safe abstractions on top of
unsafe code.

e Vec and String have unsafe code inside,
but all public functions are safe to call.

raw pointer, not
a reference!

let address = 0x012345;
let ptr = address as *const 132;
unsafe {

println! ("Value at address: {}'", *ptr);

16

Unsafe example: building safe abstractions

Get mutable access to separate halves pub const fn split at mut(v: Vec<T>, mid: usize)
of vec -> Option<(&mut [T], &mut [T])>
{
e Impossible to do in safe Rust; 1f mid <= v.len() |
compiler can’t verify halves don’t tet len = w.ienOy
let ptr = v.ptr();
overlap
unsafe {

(
Slice::from raw(ptr, mid),

Slice::from raw(ptr.add(mid), len - mid),

} else {

None

Unsafe example: making Mutex Send/Sync

pub struct Mutex<T> {
inner: sys::Mutex,
poison: poison::Flag,

data: UnsafeCell<T>,

Internal types of Mutex are not
necessarily safe to Send and Sync

unsafe impl<T: Send> Send for Mutex<T> {}

unsafe impl<T: Send> Sync for Mutex<T> {}

Since we are confident the mutex locking logic
makes it safe to Send and Sync a Mutex<T>
regardless of what T is, we can declare the trait
implementations.

But! It's unsafe to impl these traits: if we impl
Sync for a type that isn't safe to share, then
Rust’s guarantees no longer hold

Compare to Copy: always safe to impl even
though poor judgement will cause bad

18
performance

Unsafe Rust

If we can turn off safety checks, how is this
better than C/C++?

e |f a segfault occurs, only have to look at
unsafe blocks instead of whole program

e Unsafe code in standard library and
popular packages is audited to ensure
correctness

19

Parallelism (again)

But with channels this time

20

Mutexes are hard, what else can we do?

Do not communicate by sharing memory; instead, share memory by
communicating.

- Effective Go

21

https://go.dev/doc/effective_go

Mutexes are hard, what else can we do?

Do not communicate by sharing memory; instead, share memory by
communicating.

- Effective Go

View 1: View 2:

Programs are a set of threads running in Programs are a set of threads running in
parallel that operate on one shared heap parallel operating on disjoint heaps and sharing

data via inter-thread channels

22

https://go.dev/doc/effective_go

Higher-level concurrency: channels

use std::sync::mpsc;

use std::thread;

fn main() {
// (transmit, receive)
let (tx, rx) = mpsc::channel();
thread: :spawn (move || {

tx.send(10) .unwrap() ;

1)

println! ("Got: {}", rx.recv () .unwrap());

Two ends:

Multiple producers
Single consumer

23

Higher-level concurrency: channels

use std::sync::mpsc;

use std::thread;

fn main() {
// (transmit, receive)
let (tx, rx) = mpsc::channel();
thread: :spawn (move || {
tx.send(10) .unwrap() ;
})

println! ("Got: {}", rx.recv().unwrap());

sending a value is instantaneous

recving a value waits until a value is in the
channel.

24

Higher-level concurrency: channels

use std::sync::mpsc;

use std::thread;

fn main() {
// (transmit, receive)
let (tx, rx) = mpsc::channel();
thread: :spawn (move || {

tx.send(10) .unwrap() ;

1)

println! ("Got: {}", rx.recv() .unwrap()):;

send and recv return an Option

When can sending or receiving go wrong?

25

But what is a channel?

use std::collections::VecDeque;

use std::sync::Mutex;

pub struct Channel<T> ({

data: Mutex<VecDeque<T>>

impl<T> Channel<T> {

pub fn new() -> Channel<T> { ... }

pub fn send(&self,
self.data.lock().

pub fn recv(&self)
self.data.lock().

value: T) |

unwrap () .push back(value) ;

-> Option<T> {

unwrap () .data.pop front()

26

But what is a channel?

use std::collections::VecDeque;

use std::sync::Mutex;

pub struct Channel<T> ({

data: Mutex<VecDeque<T>>

impl<T> Channel<T> {
pub fn new() -> Channel<T> { ... }

pub fn send(&self, value: T) {
self.data.lock() .unwrap() .push back(value);

pub fn recv(&self) -> Option<T> ({
self.data.lock() .unwrapf¥) .data.pop front()

This doesn’t match the

interface we want -

Ok, but really

use std::collections::VecDeque;

use std::sync::{Arc, Condvar, Mutex};

pub struct Channel<T> {
data: Mutex<VecDeque<T>>,
cv: Condvar,

}

Condition variable: allows a
thread to sleep until a
condition is met

Example: sleep until queue is
non-empty

impl<T> Channel<T> {

pub fn new() -> Channel<T> { ... }

pub fn send(&self, value: T) {
let mut data = self.data.lock () .unwrap();

data.push back(value);
self.cv.notify one(); ~—__ | Wake one thread that
} is sleeping

pub fn recv(&self) -> T {
let mut data = self.data.lock() .unwrap():;
while data.is empty () {
data = self.cv.wait (data) .unwrap () ;

}
data.pop front () .unwrap ()

Sleep til condition is

met 28

Going further

If the queue is long enough, two threads should
be able to send and receive without waiting for
the mutex.

One mutex for each thread item?

In general: implementing channels is a
challenging concurrency problem. See
crossbeam for a good implementation.

front

Channel

back

29

https://docs.rs/crossbeam/latest/crossbeam/

Quiz

Suppose you have a multi-threaded web server
with each thread processing requests, and they
need to occasionally log events to a global,
combined log.

How would you implement with channels?
With shared-state (mutex)?

What are the pros and cons?

fn worker thread (args: ?227?) {

loop {
// do some work
let event = generate event ();

// log event somehow?

30

Quiz

Shared state

static logs: Mutex<Vec<String>> =

Mutex: :new (Vec::new());

fn worker thread() {
loop {
// do some work
let event = generate event();

logs.lock () .push (event);

Quiz

Shared state

static logs: Mutex<Vec<String>> =

Mutex: :new (Vec::new());

fn worker thread() {
loop {
// do some work
let event = generate event();

logs.lock () .push (event);

Channel tx
Channels

fn worker thread(logger: Sender<String>) {
loop {
// do some work
let event = generate event();

logger.send (event) ; Channel rx

}

fn logger thread(workers: Vec<Receiver<String>>) {

let logs = Vec::new();
loop {
let event = recv from any worker (workers);

logs.push (event) ;

32

Quiz

Shared-state

Pro:
o 77
Con:
o 77

Channels

Pro:

o 77

Con:

33

QuIz
Shared-state
Pro:
e Logger thread can’t become overwhelmed

Con:

e \Worker threads waste time waiting for
lock to be released

Channels
Pro:

e \Worker threads can send the log
instantly and get back to work

Con:

e Logger thread can get
overwhelmed

34

Takeaways

Channels are a nice abstraction, but generally
have higher overheads than using a mutex.

If your problem involves communication, use
someone else’s channel implementation instead
of making your own!

If the performance isn’t high enough, think
about how you can use a mutex instead.

35

Another channel example

fn main() { How to turn a single-consumer channel
let (tx, rx) = mpsc::channel(); into a multi-consumer channel?
let rx = Arc::new(Mutex: :new(rx));
for 1 in 1..100 {

tx.send (i) .unwrap() ;

for in 0..10 {

let rx = Arc::clone(&rx);

std: :thread: :spawn(move || loop ({
let n: u64d = rx.lock() .unwrap() .recv() .unwrap();
tet result = collatz(n); “Thread Pool”: handful of threads
println!{"Collatz({n}) = {result}?; collectively completing list of tasks

1)

36

Concurrency or parallelism?

Book

Website
10/15 Parallel Shared Memory [code] 16 -
10/22 Parallel Message Passing 16

/J 16. Fearless Concurrency

16.1. Using Threads to Run Code
Simultaneously

16.2. Using Message Passing to

What's the difference between concurrency and
parallelism? Is there one?

Transfer Data Between Threads
16.3. Shared-State Concurrency

16.4. Extensible Concurrency with
the Sync and Send Traits

37

Concurrency or parallelism?

Concurrency Parallelism
e View 1:tasks are interruptible e Subset of concurrency
e View 2: multiple tasks can make progress e Multiple tasks are executed at the same
time
|
|
1

time

-3

38

COI’]CU I‘I‘ency or pCI rda I Iel ism? Also usually exhibits interleaving, since a

single CPU thread runs many OS threads

Concurrency Parallelism
e View 1:tasks are interruptible e Subset of concurrency
e View 2: multiple tasks can make progress e Multiple tasks are executed at the same
time
-0 00
| |
| | o :
| A =

time

C

o i RS
-
{

39

Concurrency or parallelism?

Harder than single-threaded
Faster than single-threaded

Concurrency Parallelism

e View 1:tasks are interruptible °
e View 2: multiple tasks can make progress °

A

time

o i RS

Subset of concurrency
Multiple tasks are executed at the same

|
)

A

C

40

Concurrency or parallelism?

Why care about concurrency?

e |[sitfaster?
e |[sithard?

A

B

41

Concurrency or parallelism?

Why care about concurrency?

Is it faster?
Is it hard?

Is it faster? (than sequential)

Yes! Some operations require waiting on someone
else. Do something else while you wait.

e Send request to a server -> wait on network
e Read from a file -> wait on OS

Is it hard?

Not as hard as parallelism. No data races, but still
need to worry about tasks getting interrupted

e Whatif your task gets interrupted after
popping a Vec element but before updating
the length?

42

Concurrency example

Sequential Concurrent (not parallel)
fn main() { fn main() {
let servers = vec![...]; let servers = vec![...];
for server in servers { let mut requests = vec![];
let request = make request(server); for server in servers {
request.wait for response(); requests.push (make request(server));
} }
} for request in requests {

request.wait for response();

43

Concurrency or parallelism?

Non-simultaneous

Simultaneous

Non-interleaving

Fully sequential

Interleaving

Single-threaded
concurrency

Multi-threading

concurrent

concurrent &

parallel

44

Concurrency or parallelism?

Non-simultaneous

Simultaneous

previous slide &

First part of course async Rust

Non-interleaving

Fully sequential

Interleaving

Single-threaded concurrent
concurrency

t &
Multi-threading g;?; ﬁ;rlen

\

Last two lectures .5

https://rust-lang.github.io/async-book/

Concurrency or parallelism?

Non-simultaneous

Simultaneous

previous slide &

First part of course async Rust

Non-interleaving

Fully sequential

Multi-threading but simpler

Interleaving

Single-threaded concurrent
concurrency

t &
Multi-threading g;?; ﬁ;rten

\

Last two lectures i

https://rust-lang.github.io/async-book/

Want to learn more?

Concurrency is Not Parallelism

https://go.dev/blog/waza-talk

47

https://go.dev/blog/waza-talk

