
Lecture 7
Smart Pointers and Trait Objects

1

From PLQ: What Fn type should my function take?
FnOnce: implemented by all functions

FnMut: implemented by functions that
don’t move data out of their
environment

Fn: implemented by functions that
don’t mutate or move data from their
environment

FnOnce: can be called once

FnMut: can be called infinitely, as
long as you have a mutable
reference

Fn: can be called infinitely

2

more
accepting

more
useful

Writing a function that takes another
function? Take the highest Fn… trait you
can that still suits your needs

Lifetimes
fn identity<'a>(s1: &'a str) -> &'a str {

 s1

}

Can be called with any reference (including
static)

3

fn longer<'a>(s1: &'a str, s2: &'a str)

 -> &'a str { … }

Reference of input lifetimes must overlap

fn get_course() -> &'static str {

 let x = “cis1905”;

 return x;

}

static is special

Lifetimes only make sense within the context of
a single function

Quiz from last time

struct Foo<'a> {

 bar: &'a i32

}

fn baz<'a, 'b>(f: &'a Foo<'b>) -> &’??? i32

{ /* omitted */ }

Will this compile? No!

Two separate lifetimes in the input

● can’t infer output lifetime without
ambiguity

4

fn baz<'a, 'b>(f: &'a &'b i32) -> &’??? i32

{ /* omitted */}

Smart Pointers

5

Back to lists
struct List<T> {

 value: T,

 next: Option<Box<List<T>>>,

}

impl<T> List<T> {

 fn new(value: T) -> Self {

 List { value, next: None }

 }

}

fn main() {

 let mut list1 = List::new(1);

 let mut list2 = List::new(2);

 let node = Box::new(List::new(3));

 list1.next = Some(node);

 list2.next = Some(node);

}

6

error[E0382]: use of moved value: `node`
 --> list.rs:17:21
16 | list1.next = Some(node);
 | ---- value moved here
17 | list2.next = Some(node);
 | ^^^^ value used here after move

1

2

3

Why as_mut()?
pub fn as_mut<T>(&mut Option<T>) -> Option<&mut T>

7

as_mut_ref.unwrap() = 7; // bad!

*as_mut_ref.as_mut().unwrap() = 7; // good!
type: u32 (not assignable)

type: &mut u32 (assignable)

let mut x: Option<u32> = Some(5);

let as_mut_ref: &mut Option<u32> = &mut x;

pub fn as_ref<T>(&Option<T>) -> Option<&T>

Recall: why ownership?

One owner -> statically determine when values
can be destructed (when their owner is no

longer accessible)

8

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

Is multiple ownership bad?
Yes—why?

● How to tell when values should be
destructed?

No—why?

● Sometimes real programs need shared
ownership

9

��

track at run-time instead
of compile-time

Multiple ownership via reference counting

Reasoning about shared ownership statically is impossible ->
record ownership data at runtime

● When a clone is made, increment refcount
● When an owner goes out of scope, decrement refcount
● When refcount is 0, deallocate

10

Rc: reference counted pointer
use std::rc::Rc;

struct List<T> {

 value: T,

 next: Option<Rc<List<T>>>,

}

impl<T> List<T> {

 fn new(value: T) -> Self {

 List { value, next: None }

 }

}

fn main() {

 let mut list1 = List::new(1);

 let mut list2 = List::new(2);

 let node = Rc::new(List::new(3));

 list1.next = Some(Rc::clone(&node));

 list2.next = Some(Rc::clone(&node));

}

11

1

2

3

Rc allows shared ownership by figuring out
when to run destructor at run-time

three owners of Node(3)

How to implement Rc?

Rc<T>

ref count: 1

ptr<T> Node<T>

Rc<T>

ptr<T>

RcInner

ref count: 1

Node<T>

12

stack heap stack heap

A or B?

How to implement Rc?

Rc<T>

ref count: 1

ptr<T> Node<T>

Rc<T>

ptr<T>

RcInner

ref count: 2

Node<T>

13

stack heap stack heap

Rc<T>

ref count: 1

ptr<T>

Rc<T>

ptr<T>

A or B?

Rc: reference counted pointer
use std::rc::Rc;

struct List<T> {

 value: T,

 next: Option<Rc<List<T>>>,

}

impl<T> List<T> {

 fn new(value: T) -> Self {

 List { value, next: None }

 }

}

fn main() {

 let mut list1 = Rc::new(List::new(1));

 let mut list2 = Rc::new(List::new(2));

 let node = Rc::new(List::new(3));

 list1.next = Some(Rc::clone(&node));

 list2.next = Some(Rc::clone(&node));

}

14

1

2

3

But, next isn’t a field on Rc?
Types that are like pointers implement the Deref trait
so that they can be treated like the inner type

auto-deref:

&mut Rc<List<i32>>

&mut List<i32>

https://doc.rust-lang.org/std/ops/trait.Deref.html

https://doc.rust-lang.org/std/ops/trait.Deref.html

Using Rc as Garbage Collection
Don’t want to think about ownership? Just wrap
everything in Rc

● Don’t actually do this, but it works in
theory

15

Rc summary
Some data structures require shared ownership

● Reuse data instead of cloning
● graphs, linked lists, DAGs

Rc is a primitive form of garbage collection

● e.g. in Python, every value is reference
counted

16

Reasoning about shared ownership statically is
impossible -> record ownership data at runtime

● When a clone is made, increment
refcount

● When an owner goes out of scope,
decrement refcount

● When refcount is 0, deallocate

Shared ownership woes
use std::rc::Rc;

struct List<T> {

 value: T,

 next: Option<Rc<List<T>>>,

}

impl<T> List<T> {

 fn new(value: T) -> Self {

 List { value, next: None }

 }

}

fn main() {

 let mut list1 = List::new(1);

 let mut list2 = List::new(2);

 let node = Rc::new(List::new(3));

 list1.next = Some(Rc::clone(&node));

 list2.next = Some(Rc::clone(&node));

 node.value = 5;

}

17

1

2

3

error[E0594]: cannot assign to data in an `Rc`
 --> refcell.rs:22:3
 |
22 | node.value = 5;
 | ^^^^^^^^^^^^^^ cannot assign
 |

Shared ownership ≠ shared mutability
Since Rced values can have multiple owners,
never safe to give out mutable references to
inner type T!

18

fn main() {

 let mut v1: Rc<Vec<i32>> = Rc::new(vec![1]);

 let mut v2: Rc<Vec<i32>> = Rc::copy(&v1);

 let v1_mut: &mut Vec<i32> = &mut *v1;

 let v2_mut: &mut Vec<i32> = &mut *v2);

 let first: &mut i32 = &mut v2_mut[0];

 v1_mut.pop();

 println!("{:?}", first); // dangling!

}

How to mutate shared values without violating
Rust’s safety guarantees? (no dangling references)

Shared ownership ≠ shared mutability
Since Rced values can have multiple owners,
never safe to give out mutable references to
inner type T!

19

fn main() {

 let mut v1: Rc<Vec<i32>> = Rc::new(vec![1]);

 let mut v2: Rc<Vec<i32>> = Rc::copy(&v1);

 let v1_mut: &mut Vec<i32> = &mut *v1;

 let v2_mut: &mut Vec<i32> = &mut *v2);

 let first: &mut i32 = &mut v2_mut[0];

 v1_mut.pop();

 println!("{:?}", first); // dangling!

}

Rc: shared ownership -> dynamically track owners
??: shared mutation -> dynamically track mutators

How to mutate shared values without violating
Rust’s safety guarantees? (no dangling references)

List Attempt #3
use std::rc::Rc;

struct List<T> {

 value: T,

 next: Option<Rc<RefCell<List<T>>>>,

}

impl<T> List<T> {

 fn new(value: T) -> Self {

 List { value, next: None }

 }

}

fn main() {

 let mut list1 = List::new(1);

 let mut list2 = List::new(2);

 let node =

Rc::new(RefCell::new(List::new(3)));

 list1.next = Some(Rc::clone(&node));

 list2.next = Some(Rc::clone(&node));

 node.borrow_mut().value = 5;

}

20

1

2

5

✅RefCell: count mutable/immutable references at
run-time
● create new refs with borrow/borrow_mut
● panics if more than one mut OR mut and non-mut at

same time

fn main() {

 let mut list1 = List::new(1);

 let mut list2 = List::new(2);

 let node =

Rc::new(RefCell::new(List::new(3)));

 list1.next = Some(Rc::clone(&node));

 list2.next = Some(Rc::clone(&node));

 let ref1 = node.borrow_mut();

 let ref2 = node.borrow_mut();

}

List Attempt #3
use std::rc::Rc;

struct List<T> {

 value: T,

 next: Option<Rc<RefCell<List<T>>>>,

}

impl<T> List<T> {

 fn new(value: T) -> Self {

 List { value, next: None }

 }

}

21

1

2

5

compiles✅…
panics 😔

RefCell: count mutable/immutable references at
run-time
● create new refs with borrow/borrow_mut
● panics if more than one mut OR mut and non-mut at

same time

RefCell is not a reference/pointer!

22

use std::cell::RefCell;

fn main() {

 let v = RefCell::new(1);

 let r1 = v.borrow();

 let r2 = v.borrow();

}

RefCell<i32>

borrow
count: 2

i32

r1

r2

stack heap

RefCell is not a reference/pointer!

RefCell<i32>

borrow
count: -1

i32

r1

23

stack heap
use std::cell::RefCell;

fn main() {

 let v = RefCell::new(1);

 let r1 = v.borrow_mut();

}

RefCell recapped
Sometimes the compiler can’t statically verify
that you follow the reference rules

● Offload reference checking to run-time

24

The Rule of References:
● At any given time, you can have either one

mutable reference or any number of
immutable references.

● References must always be valid.

Another RefCell example
struct List<T> {

 pub value: T,

 pub next: Option<Box<List<T>>>,

}

impl<T> List<T> {

 fn first(&mut self) -> &mut T { todo!() }

 fn last(&mut self) -> &mut T { todo!() }

 fn ends(&mut self) -> (&mut T, &mut T) {

 (self.first(), self.last())

 }

}

25

1 2

Separate nodes! 👍

error[E0499]: cannot borrow `*self` as mutable more than once at a time
 --> partition_bad.rs:22:20
 |
21 | fn ends(&mut self) -> (&mut T, &mut T) {
22 | (self.first(), self.last())
 | ^^^^ ^^^^
 | | |
 | | second mutable borrow occurs here
 | first mutable borrow occurs here

A quick aside on computability
Halting problem:

“Writing a program that decides whether a
turing machine halts on a given input is
impossible”

Rice’s theorem:

“Statically deciding any non-trivial property of a
program is impossible”

Things you can’t decide just by looking at a
program

● Does this program leak memory?
● Does this program have a use-after-free

bug?
● Does this function always produce the

same output as another function?
● Does this program have a race condition?

26

Rust and decidability
Programs Rust would like to disallow for you at compile time

● Multiple mutable references at the same time
● Reference pointing to invalid memory
● etc.

27

Unsound

● All valid programs are allowed👍
● Some invalid programs are allowed🚨

Incomplete

● Some valid programs aren’t allowed🚨
● All invalid programs aren’t allowed.👍

Pick One:

Another RefCell example
struct List<T> {

 pub value: T,

 pub next: Option<Box<List<T>>>,

}

impl<T> List<T> {

 fn first(&mut self) -> &mut T { todo!() }

 fn last(&mut self) -> &mut T { todo!() }

 fn ends(&mut self) -> (&mut T, &mut T) {

 (self.first(), self.last())

 }

}

28

1 2

Separate nodes! 👍

error[E0499]: cannot borrow `*self` as mutable more than once at a time
 --> partition_bad.rs:22:20
 |
21 | fn ends(&mut self) -> (&mut T, &mut T) {
22 | (self.first(), self.last())
 | ^^^^ ^^^^
 | | |
 | | second mutable borrow occurs here
 | first mutable borrow occurs here

Incomplete

● Some valid programs aren’t allowed🚨
● All invalid programs aren’t allowed.👍

A quick aside on computability
Halting problem:

“Writing a program that decides whether a
turing machine halts on a given input is
impossible”

Rice’s theorem:

“Statically deciding any non-trivial property of a
program is impossible”

Things you can’t decide just by looking at a
program

● Does this program leak memory?
● Does this program have a use-after-free

bug?
● Does this function always produce the

same output as another function?
● Does this program have a race condition?

29

What about deciding
dynamically (at run time)?

Another RefCell example
struct List<T> {

 pub value: T,

 pub next: Option<Box<List<T>>>,

}

impl<T> List<T> {

 fn first(&mut self) -> &mut T { todo!() }

 fn last(&mut self) -> &mut T { todo!() }

 fn ends(&mut self) -> (&mut T, &mut T) {

 (self.first(), self.last())

 }

}

use std::cell::RefCell;

use std::cell::RefMut;

struct List<T> {

 pub value: T,

 pub next: Option<Rc<RefCell<List<T>>>>,

}

impl<T> List<T> {

 fn first(&self) -> RefMut<T> { todo!() }

 fn last(&self) -> RefMut<T> { todo!() }

 fn ends(&self) -> (RefMut<T>, RefMut<T>) {

 (self.first(), self.last())

 }

}

30

1 2

Separate nodes! 👍

✅
&T/&mut T -> checked by compiler
Ref<T>/RefMut<T> checked dynamically by RefCell

RefCell/Rc takeaways
When needing multiple ownership, often use
Rc<RefCell<T>>

It’s not that the compiler isn’t smart enough to
validate your program, it’s that it’s impossible
to validate your program

31

Inherited mutability vs. interior mutability

fn clear_name(p: &mut Person) {

 p.name = name;

}

fn clear_name(p: &RefCell<Person>) {

 p.borrow_mut().name = name;

}

32

struct Person {

 name: String

}

Inherited mutability: can’t mutate the fields
unless you have a &mut reference

Interior mutability: allows mutating even with
a immutable reference (safety is checked by
some other mechanism)

Trait Objects

33

New generic syntax:
Exactly the same

34

fn foo<T: Debug>(value: T) { todo!() }

fn foo(value: impl Debug) { todo!() }

Recall: No cost to use traits
trait Draw {

 fn draw(&self) -> String

}

fn show(shape: impl Draw) {

 println!("{}", shape.draw());

}

pub fn main() {

 show(Circle { radius: 1 });

 show(Rect { size: (1, 1) });

}

35

struct Rect {

 size: (i32, i32),

}

impl Draw for Rect {

 fn draw(&self) -> String { todo!() }

}

struct Circle {

 radius: i32

}

impl Draw for Circle {

 fn draw(&self) -> String { todo!() }

}

crate::show<Circle>:

 sub rsp, 152

 mov dword ptr [rsp + 12], edi

 ...

crate::show<Rect>:

 sub rsp, 152

 mov dword ptr [rsp + 12], edi

 ...
https://godbolt.org/z/n151dnK5q

https://godbolt.org/z/n151dnK5q

Returning generics
fn make_drawable(is_circle: bool) -> impl Draw {

 if is_circle {

 Circle { radius: 1 }

 } else {

 Rect { size: (1, 1) }

 }

}

36

error[E0308]: `if` and `else` have incompatible types
 --> draw.rs:36:5
 |
33 | / if is_circle {
34 | | Circle { radius: 1 }
 | | -------------------- expected because of this
35 | | } else {
36 | | Rect { size: (1, 1) }
 | | ^^^^^^^^^^^^^^^^^^^^^ expected `Circle`, found `Rect`
37 | | }
 | |___- `if` and `else` have incompatible types

Returning generics
fn make_drawable() -> impl Draw {

 if rand::thread_rng().gen() {

 Circle { radius: 1 }

 } else {

 Rect { size: (1, 1) }

 }

}

Impossible to know whether Circle or Rect
will be returned

37

error[E0308]: `if` and `else` have incompatible types
 --> draw.rs:36:5
 |
33 | / if rand::thread_rng().gen() {
34 | | Circle { radius: 1 }
 | | -------------------- expected because of this
35 | | } else {
36 | | Rect { size: (1, 1) }
 | | ^^^^^^^^^^^^^^^^^^^^^ expected `Circle`, found `Rect`
37 | | }
 | |___- `if` and `else` have incompatible types

pub fn main() {

 let s = make_drawable();

 println!("{}", std::mem::size_of_val(&s));

}
???

Quick Quiz
fn foo<T: Draw>(_v: T) -> T {

 Circle { radius: 1 }

}

Is this program valid?

38

Quick Quiz
fn foo<T: Draw>(_v: T) -> T {

 Circle { radius: 1 }

}

Is this program valid?

No! Could be instantiated with T=Rect and
then returning a Circle is improper

39

Trait Objects
Generics have no run-time cost because we can
resolve them at compile-time, but what if we
can’t?

40

fn make_drawable() -> impl Draw {

 if rand::thread_rng().gen() {

 Circle { radius: 1 }

 } else {

 Rect { size: (1, 1) }

 }

}

Trait Objects
fn make_drawable() -> Box<dyn Draw> {

 if rand::thread_rng().gen() {

 Box::new(Circle { radius: 1 })

 } else {

 Box::new(Rect { size: (1, 1) })

 }

}

What type is in the box?

● don’t know, all we know is we can call
draw on it

41

fn foo() {

 let s: Box<dyn Draw> = make_drawable();

 s.draw();

}

Working with trait objects
Unknown size: always behind a reference of
some sort

● Box<dyn Draw>
● &dyn Draw
● &mut dyn Draw
● ...

42

Trait object layout

Box<dyn Draw>

data ptr

43

stack

pub fn main() {

 let rect = Rect { size: (1, 1) };

 let trait_obj: Box<dyn Draw> =

 Box::new(sq);

}

vtable ptr

Rect::draw:

sub rsp, 152

mov dword ptr

[rsp + 12], edi

code

...

Rect vtable

draw(...)

Circle vtable

draw(...)

static

Rect

1

1

heap

Cost of using trait objects
Normal function call

 call b15b6ba806fc18e4

Trait object function call

 mov rax, qword ptr [rax + 24]

 lea rdi, [rsp + 16]

 call rax

44https://godbolt.org/z/f8Gh7Tss7

Call of static address
● Can be inlined by compiler
● No branch misprediction

Call of dynamic address
● Can’t be inlined by compiler
● Possible branch misprediction

load

https://godbolt.org/z/f8Gh7Tss7

Another example
fn show_all(v: Vec<&dyn Draw>) {

 for item in v {

 println!("{}", item.draw());

 }

}

Allows implementing patterns from object
oriented programming

45

Vec that has “different types” in
it! (normally not allowed)

fn main() {

 show_all(vec![

 Box::new(Circle { radius: 1 }),

 Box::new(Rect { size: (1, 1) })]);

}

Today’s theme: offloading checks to run-time
Check at compile-time: no run-time
performance penalty

● single ownership
● & and &mut references
● generics with <T>

Check at run-time: more flexibility

● multiple ownership with Rc
● Ref and RefMut references from RefCell
● generics with dyn T

46

