Lecture 06

Lifetimes, Closures

PLQ Questions

Enforcing Invariants

How can we guarantee that a String always represents valid UTF-8?

The compiler cannot enforce “everything” at compile time (due to Rice’s thm.),
therefore we must “trust” library developers to write correct code (in this case,
we can trust the standard library developers).

Correct # “Safe” (many examples)

We guarantee that invariants are upheld by using private members for the
purposes of encapsulation.

Many APIs expose “unsafe” methods which potentially break these invariants.

UTF-8 String Example

Strings are “actually” stored as a
Vec<u8>, but that's hidden to the user.
Each “character” is variable width.

character encoding

S 8 > > >

8t

UTF-8
UTF-16
UTF-32
UTF-8
UTF-16
UTF-32

00000000 00000000
11100011

00000000 00000000

00000000
00000000
10000001
00110000
00110000

bits

01000001
01000001
01000001
10000010
01000010
01000010

/// ... a bunch of documentation ...

#[derive (PartialkEg, PartialOrd, Eq, Ord)]
#[stable (feature = "rustl", since = "1.0.0")]
#[lang = "String"]

pub struct String {

vec: Vec<u8>,

Standard library: string.rs

Notably Rust doesn’t support indexing into a string,
since the i index doesn’t necessarily correspond to the
it character (or even a valid character).

Randomized Testing?

Yes! There is actually a Rust
version of the QuickCheck library.

The proptest crate also offers
similar functionality.

fn reverse<T: Clone>(xs: &[T]) —-> Vec<T> {
let mut rev = vec![];
for x in xs.iter() {

rev.insert (0, x.clone())

rev

#lcfg(test)]
mod tests {
use quickcheck: :quickcheck;

use super::reverse;

quickcheck! {
fn prop(xs: Vec<u32>) -> bool {

Xs == reverse(&reverse(&xs))

mod example {

Working arou nd -I-he pub trait NumericConstantsExt {

fn zero() -> Self;

Orphan Trait Rule fn one() -> self;

A common way to “work around” the Orphan impl NumericConstantsExt for 132 |
Trait Rule is by a design pattern known as fn zero() -> Self { 0 }
“extension traits”. fn one() -> Self { 1 }

In this example, we implement new
functionality for 132, which is not allowed
directly. nod user |

use crate::example: :NumericConstantsExt;

Often times you will see the trait name

suffixed by Ext, meaning “extension”.
fn test() {

let zero = 132::zero();

The orphan issue is solved. Why?

mod example {

WO rking arou nd -I-he pub trait NumericConstantsExt {

fn zero() -> Self;

Orphan Trait Rule fn one() -> self;

A common way to “work around” the Orphan impl NumericConstantsExt for 132 |
Trait Rule is by a design pattern known as fn zero() -> Self { 0 }
“extension traits”. fn one() -> Self { 1 }

In this example, we implement new
functionality for 132, which is not allowed
directly. nod user |

use crate::example: :NumericConstantsExt;

Often times you will see the trait name

suffixed by Ext, meaning “extension”.
fn test() {

let zero = 132::zero();

The orphan issue is solved. Why?

The user must explicitly import the trait... }

How does .iter () work?

The lterator type is actually a trait, which requires a
single method. Each different “kind” of iterator is
actually a struct which implements that trait.

This trait is implemented + optimized differently for

every type that supports iteration.

// core/src/slice/iter.rs
pub struct Iter<'a, T: 'a> {
ptr: NonNull<T>,

end or len: *const T,

_marker: PhantomData<é&'a T>,

pub trait Iterator {

type Item;

// Required method

fn next (&mut self) -> Option<Self::Item>;

// A bunch of provided “helper” methods...

The actual implementations often make use of
“unsafe” code for performance reasons. But
generally, no copy is performed. Instead, the
iterator struct references the base collection and
stores some metadata (e.qg. iteration index).

How does .iter () work?

The Iterator type is actually a trait, which requires a PuP trait Iterator {
single method. Each different “kind” of iterator is type ltem;
actually a struct which implements that trait.

. L L . // Required method
This trait is implemented + optimized differently for

. . fn next (&mut self) -> Option<Self::Item>;
every type that supports iteration. .

A Db h of ided “hel " thods. ..
// core/src/slice/iter.rs // unch ol proviae €-per” methoas

pub struct Iter T: { J

ptr: NonNull<T>,
The actual implementations often make use of
end or len: *const T, B .
unsafe” code for performance reasons. But
marker: PhantomData T>, .
- generally, no copy is performed. Instead, the
iterator struct references the base collection and
stores some metadata (e.qg. iteration index).

Today: safety and performance

Why care about this? If we don’t have this?
Performance: Safety:
e Spend lots of time running user code None of

e Run it quickl
L y e null pointer deref

® use after free
e double free

Performance is only hard... if you have to maintain safety

10

How to make safety easy?

Imagine Rust but without references

e All values are owned
e FEveryvalueis

a. returned from a function, OR
b. freed at the end of the function

At compile time, know exactly where to insert
callstomalloc() and free()

e impossible to have dangling references

fn make list () —-> Vec<i32> {
vec! [0, 1, 2, 3]

// vec 1s not deallocated,

fn main () {
let 1 = make list ();
// 1 1s deallocated here

References are what make safety hard!

it's returned

11

How to make safety hard?

Now consider references
fn main () {
L4 Regardless Of Language! let s = String::from("hello"™);

let as _ref = &s;

println! ("{}", as_ref);
void main () { }
// "owned" string
char* name = malloc(8);
memcpy (name, "cisl905", 8); public static void main(String[] args) { <>
// "Owned" list of strings < _
// reference into string List<String> stringlist = new ArrayList<>();
char* number = name + 3; stringList.add ("Hello");
} stringList.add ("World") ;

// Reference to element of list

String s = stringList.get (0);

12

How to make safety hard?

Now consider references

e Regardless of language!

volid main () {

// "owned" string
char* name = malloc(8);

memcpy (name, "cis1905"™, 8);

// reference into string

char* number = name + 3;

What happens when a reference outlives the
value it references?

e Let the reference dangle
o Extend the life of the referenced value

13

How to deal with reference outliving value?

Let the reference dangle Extend the life of the referenced value
e Approach taken by C/C++ e Approach taken by Java/Python
e Performance but no safety! e Safety but poor performance!

e (garbage collection)

14

Brief primer on garbage collection

Used in all languages that don’t have
malloc/free

Does clients get returned in
the db or can it be freed at the
end of setup? Impossible to know

How to know how long values live?

public static Database setup() {

List<String> clients = new ArrayList<>{}

clients.add ("ClientA") ;

clients.add ("ClientB") ;

List<Client> client list = makeClients(clients);
List<Orders> orders = makeOrders(client list, orders);
List<Invoice> invoices = makeInvoices(clients, orders);

Database db = makeDatabase (orders, invoices, clients);

return db;

15

Brief primer on garbage collection

Garbage collection:

1. Just put every value on the heap and
don’t worry about freeing it

2. When you get low on memory, walk
through every alive variable to find
values that are still reachable.

3. Free any value thatisn't reachable

16

Brief primer on garbage collection

Garbage collection guarantees Developer never needs to free values &
e An in-use value will never be freed Program periodically stops and all unused
e \When avalueis no longer values are freed &2

accessible, it will eventually be freed

Modern garbage collectors are fast...

But manually managing your memory
is (usually) faster

17

How to deal with reference outliving value?

Let the reference dangle Extend the life of the referenced value
e Approach taken by C/C++ e Approach taken by Java/Python
e Performance but no safety! e Safety but poor performance!

e (garbage collection)

Disallow compilation of program with dangling reference?

e All programs that compile are performant and safe
e But how?

18

wWhy can references dangle?

Where could the returned pointer point to? char* foo (char *name, char *job) {

// implementation omitted

input argument name

input argument job

e a local variable created during the
function

e aglobal variable

Some of these make a dangling reference, some
don’t

e |f the compiler is going to detect dangling
references, it needs more information...

19

The same function but in Rust

Where could the returned pointer point to? fn foo (name:

&str, Jjob:

&str)

// implementation omitted

e input argument name
input argument job

e a local variable created during the
function

e aglobal variable

Need to tell compiler

error [E0106]: missing lifetime specifier
--> lecture.rs:1:34

I
1

| fn foo(name: &str, job: &str) -> &str {

I

|

= help: this function's return type contains a borrowed
signature does not say whether it is borrowed from “name’

-———= -———- ~ expected named lifetime parameter

value, but the
or “job’

-> &str {

20

The same function but in Rust

Where could the returned pointer point to?

£
e inputargumentname ———— !

e inputargument job

e a local variable creatW fn
function

e aglobalvariable —7— .

Need to tell compiler

fn

fool0<'a, '"b>(name:

fool<'a, 'b>(name: &'a str,

foo2 (name: &str, job: &str)

foo3<'a> (name:

&'a str, job:

&'a str, job:

job: &'b str)

&'b str)

-> &'static str

&'a str)

-> &'a str

-> &'a str

-> &'b str

21

The same function but in Rust

Where could the returned pointer point to?

. —_~______ﬂ__—~—+»fn foolO<'a, 'b>(name: &'a str, job: &'b str) -> &'a str
e |nput argument name

e inputargument job \
e a local variable created during the fn fool<'a, 'b>(name: &'a str, job: &'b str) -> &'b str

function
e aglobalvariable —7— , ,
fn foo2(name: &str, job: &str) -> &'static str

Need to tell compiler

fn foo3<'a>(name: &'a str, job: &'a str) -> &'a str
Could be from name or job /

(e.g. conditional)

22

The same function but in Rust

Where could the returned pointer point to?

. ﬂ__——————””"~‘* fn fooO<'a, 'b>(name: &'a str, job: &'b str) -> &'a str
e |nput argument name

e inputargument job \
e a local variable created during the fn fool<'a, 'b>(name: &'a str, job: &'b str) -> &'b str

function
e aglobalvariable —7— , ,
fn foo2(name: &str, job: &str) -> &'static str

Need to tell compiler

fn foo3<'a>(name: &'a str, job: &'a str) -> &'a str

Types allow reasoning about how functions
compose

Lifetimes allow reasoning about how
references compose

23

How to read lifetimes

fn main() { // find substring “target® in s’
let substring; fn find<'a, 'b>(s: &'a str, target: &'b str)
if read from file { -> &'a str
let s = read to string(file path);

substring = find(&s, "fn main"); find takes
} else { ® a str s that lives for duration ’a
substring = "no file provided';

e astrtarget that lives for duration 'b

} It returns a str that can live for up to duration ’a

println!("{}", substring)

Is this program valid?
How do you know?

24

How to read lifetimes

fn main() {
let substring;
if read from file {
let s = read to string(file path);

substring = find(&s, "fn main");

// find substring “target® in s’

fn find<'a, 'b>(s: &'a str, target: &'b str)

-> &'a str

find takes

} else { e a str s that lives for duration 'a
substring = "no file provided"; e astr target that lives for duration 'b
}
error[E0597]: “s° does not live long enough
println!("{}", substring) |
} 4 | let s = read to string(file path);
| - binding “s’ declared here
5 | substring = find(&s, "fn main");
| A~ borrowed value does not live long enough
6 | } else {
| - s’ dropped here while still borrowed
9 | println! ("{}", substring)

————————— borrow later used here

Appendix: find implementation

fn find<'a, 'b>(s: &'a str, target: &'b str) -> &'a str {
for i in O..s.len() {
let snippet = &s[i.. (1 + target.len())];
if snippet == target {

return snippet;

}

panic! ("Not found");

26

Where do lifetimes come from?

fn main() {

Lifetime:

let NSNS
if read from file | e starts when a value can first be referred

let I = read to string(file path); to*

substring = find(&s, "fn main"); e ends when a value can not be referred to*
boetse , , , Lifetimes are implicit

substring = "no file provided";
} e Never explicitly declared by programmer
println!("{}", substring)

*variable lifetimes are complicated and usually
you don’t need to think too hard. As a rule of
thumb, a variable’s lifetime is equal to its scope.

Another lifetime example

fn

main () { fn longer<'a>(sl: &'a str,
let . = String::from ("foobar"); -> &'a str {
let mut longest = sl.as str(); if sl.len() > s2.len ()
for 1 in 0..100 { sl

let . = i.to string(); } else {

longest = longer (&sl, &s2); S2

}
printlin! ("{}",

longest) ; }

Is it valid to call longer with s1 and s2 as
arguments?

{

S2:

&'a str)

28

Another lifetime example

fn main () {
let . = String::from("foobar");
let mut longest = sl.as str();
for i in 0..100 {
let . = i.to string();
longest = longer (&sl, &s2);
}
printlin! ("{}", longest);

fn longer<'a>(sl: &'a str, s2: &'a str)

-> &'a str {

if sl.len() > s2.len() {
sl

} else {
s2

s1 lives at least duration ‘a
s2 lives at least duration ‘a
return value lives at most duration ‘a

29

One more lifetime example

const program name: &str = "Theseus”; Ok... but we don't have any lifetimes
to use

fn get program name () -> &str {

program name

error[E0106]: missing lifetime specifier
--> lecture.rs:3:26
I
3 | fn get program name () -> &str {
| ~ expected named lifetime parameter

30

One more lifetime example

const program name: &str = "Theseus";

fn get program name ()

program name

-> &'static str {

Ok... but we don't have any lifetimes
to use

"static lifetime: the lifetime of the
entire program duration

31

Back to safety and performance

Safety goal: never have dangling references Performance goal: avoid using garbage
collection

Lifetime annotations enable the compiler to disallow
programs that cause dangling references

e avoid garbage collection
e maintain safety

32

Advanced usage: lifetimes

In structs

struct BookPage {
number: u3Z,

content: é&str,

|
3

error[E0106] : missing lifetime specifier
--> lecture.rs:3:14

content: é&str,
~ expected named lifetime parameter

33

Advanced usage: lifetimes in structs

Structs with references need to expose their struct BookPage<'a> {

lifetime parameter number: u32,

content: &'a str,

fn later page<'a>(pl: BookPage<'a>, p2: BookPage<'a>) -> BookPage<'a>
{

if pl.number > p2.number {

return plj; References in structs are tricky: if you find

} else { yourself doing this make sure there isn’'t a
return p2; better way

34

Final notes: lifetime elision

We've previously seen code like this. Why no
lifetime annotations required?

In simple cases, the Rust compiler will infer
lifetimes to make things easier

e [f the return type is not a reference
e If the return type is a reference and only
one input is a reference

https:/doc.rust-lang.org/nomicon/lifetime-elision.html

fn prefix(s:

&s[0..3]

&str)

-> &str |

35

Quiz

struct Foo<'a> {
bar: &'a 132
}
fn baz (f: &Foo) -> &1i32
{
/* omitted */

Will this compile? If so, what lifetime
annotations will be inferred?

36

Quiz

struct Foo<'a> {

}

fn baz<'a, 'b>(f:

{

bar: &'a 132

/* omitted */

&'a Foo<'b>)

-> &'?7?7

132

Will this compile? If so, what lifetime
annotations will be inferred?

Two separate lifetimes in the input

e can'tinfer output lifetime without
ambiguity

37

Yes but.. what if my code is too complicated?

What if | need mutable and immutable What if | need to express reference logic but
references at the same time? the compiler won’t accept my lifetime
annotations?

Rust does it's analysis at compile time when
possible.
If you can’t fit within those bounds, use built-in
types that offload safety checks to run-time

Topic of next lecture

38

Anonymous Functions/Closures

39

Another side to performance

Can we allow high level programming patterns let rainfall nums =
while maintaining performance? nums | >
take while (fun x -> x != -999)

filter (fun x -> x >= 0) |>

mean

As a case study: higher-order list functions vs. loops

40

Iterators and lambdas

fn rainfall(nums: Vec<i32>) -> Option<fod> ({
let valid nums: Vec<i3Z2> = nums
.into iter()
.take while(lé&x| x != -999)
ilter(l&x| x >= 0)
.collect();

mean (valid nums) ;

let rainfall nums =

nums |>
take while (fun x -> x != -999) [>
filter (fun x -> x >= 0) |>

mean

How do we translate this to Rust?
e need iterator functions
e need anonymous functions

41

Iterators and lambdas

fn rainfall(nums: Vec<i32>) -> Option<fod> ({

let valid nums: Vec<i3Z2> = nums
.into iter()

.take while(lé&x| x != -999)

— >

ilter(l&x| x >= 0)

.collect();

mean (valid nums) ;

Anonymous functions

— |terator functions

let rainfall nums =

nums |>
take while (fun x -> x != -999) [>

filter (fun x -> x >= 0) |>

mean

How do we translate this to Rust?
e need iterator functions
e need anonymous functions

42

Iterators and lambdas

fn rainfall(nums: Vec<i32>) -> Option<fod> ({
let valid nums: Vec<i3Z2> = nums
.into iter()

.take while(|&x| x !'= -999)
— -

ilter(l&x| x >= 0)

.collect();

mean (valid nums) ;

Anonymous functions

lterator functions

Once you've called iter/into_iter/iter_mut,
many iterator functions are available

map

filter

fold

take_while

flat_map

filter_map

Zip
https://doc.rust-lang.org/std/iter/trait.lterator.html

43

https://doc.rust-lang.org/std/iter/trait.Iterator.html

Iterators and lambdas

fn rainfall(nums: Vec<i32>) -> Option<fed> ({ Once you’ve called iter/into_iter/iter_mut,
let valid nums: Vec<i3z> = nums many iterator functions are available
.into iter()
.take while(|&x| x != -999) ¢ map
filter(lsx| x >= 0) o filter
.collect(); ® fold
mean(valid nums) ; e take_while
} e flat_map
e filter_map
. e Zip
Anonymous functions e https://doc.rust-lang.org/std/iter/trait.Iterator.html
lterator functions th about these?

44

https://doc.rust-lang.org/std/iter/trait.Iterator.html

Anonymous Functions

Allows defining short-lived functions

Type annotations optional
Abbreviated syntax
Used frequently in iterator functions

fn

let
let
let

add one vl
add one v2
add one v3

add one v4

(x:

| x:

| X |

u32)
u32 |

-> u32 {
-> u32 {

+ + 4+ o+

L S

}s
}s

45

Closures

More than just a function

e can access values that are in scope when
they’re defined
e function + environment

fn add num(v: &mut Vec<i32>, value:
let my fn = [x| {*x += value};

v.iter mut().for each(my fn);

i32)

{

46

Quiz(?)

Does this code compile?

fn take(v: Vec<i32>) {}

fn main() {

let v = Vec::new();

let my fun = || { take(v) };

my fun(); ‘\\\

my fun(); .
function

47

Quiz(?)

Does this code compile?

fn

fn

take (v: Vec<i32>) {}

main () {

let v = Vec::new();

let my fun = || { take(v) };
my fun(); ‘\\\
my fun();

function

note:
the variable

T

5 | let my fun =
I

closure cannot be invoked more than once because it moves

out of its environment

|| take(v);

48

Tricky closures

Three different traits that govern functions fn main () {
.) let mut v = Vec::new();
e Fn->immutable access to environment —— , .
let impls_fn = || { println! ("{}", v)
. i
e FnMut -> mutable access to environment —
let impls fnmut = . h(1l
e FnOnce -> moves values outof ’ HipLS_thmd I v.push (1)]
environment
let impls fnonce = || { take(v) };

!

Noticing a pattern? Behavior changes based on
e reference
e mutable reference
e owned value
Keeping these cases separate gives the Rust compiler
enough info to check many things at compile time 49

Iterators and lambdas

fn rainfall(nums: Vec<i32>) -> Option<f6i> ({
let valid nums: Vec<i3Z2> = nums
.into iter()
.take while(lé&x| x != -999)
ilter(l&x| x >= 0)
.collect();

mean(valid nums);

What's this?

50

Collect: turning iterators back to collections

Vec

HashMap

Array

String

iterator
functions

[terator

(=

iter()
into_iter()
iter_mut()

collect()

Vec

HashMap

Array

String

51

Loops vs. Iterators: rainfall performance

fn iter(v: &Vec<i32>) -> £32 { fn loops(v: &Vec<i32>) -> £32 {
let valid nums: Vec<i32> = v let mut valid nums = Vec::new();
.1ter () for x in v {
.take while(|&&x]| x != -999) match x {
.cloned() -999 => break,
ilter(l&x] x >= 0) &x 1f x >= 0 => valid nums.push (x),
.collect (); = {}
if valid nums.len() == 0 { }s
0.0 }
} else { if valid nums.len() == 0 {
valid nums.iter().fold(0, In, &al n + a) 0.0
as £32 / valid nums.len() as £32 } else {
} valid nums.iter().fold(0, |n, &al n + a)
} as £32 / walid nums.len() as £32

}

https.//doc.rust-lang.org/book/ch13-04-performance.html|

52

Appendix: comparing generated code

Comparing generated code when using loops vs
iterators

https://godbolt.ora/z/gqePhnhzvY

53

https://godbolt.org/z/qePhnhzvY

