
Lecture 06
Lifetimes, Closures

1

PLQ Questions

2

Enforcing Invariants
How can we guarantee that a String always represents valid UTF-8?

The compiler cannot enforce “everything” at compile time (due to Rice’s thm.),
therefore we must “trust” library developers to write correct code (in this case,
we can trust the standard library developers).

Correct ≠ “Safe” (many examples)

We guarantee that invariants are upheld by using private members for the
purposes of encapsulation.

Many APIs expose “unsafe” methods which potentially break these invariants.

3

UTF-8 String Example
Strings are “actually” stored as a
Vec<u8>, but that’s hidden to the user.
Each “character” is variable width.

4

/// ... a bunch of documentation ...

#[derive(PartialEq, PartialOrd, Eq, Ord)]

#[stable(feature = "rust1", since = "1.0.0")]

#[lang = "String"]

pub struct String {

 vec: Vec<u8>,

}

Standard library: string.rs

Notably Rust doesn’t support indexing into a string,
since the ith index doesn’t necessarily correspond to the
ith character (or even a valid character).

Randomized Testing?
Yes! There is actually a Rust
version of the QuickCheck library.

The proptest crate also offers
similar functionality.

5

fn reverse<T: Clone>(xs: &[T]) -> Vec<T> {

 let mut rev = vec![];

 for x in xs.iter() {

 rev.insert(0, x.clone())

 }

 rev

}

#[cfg(test)]

mod tests {

 use quickcheck::quickcheck;

 use super::reverse;

 quickcheck! {

 fn prop(xs: Vec<u32>) -> bool {

 xs == reverse(&reverse(&xs))

 }

 }

}

Working around the
Orphan Trait Rule
A common way to “work around” the Orphan
Trait Rule is by a design pattern known as
“extension traits”.

In this example, we implement new
functionality for i32, which is not allowed
directly.

Often times you will see the trait name
suffixed by Ext, meaning “extension”.

The orphan issue is solved. Why?

6

mod example {

 pub trait NumericConstantsExt {

 fn zero() -> Self;

 fn one() -> Self;

 }

 impl NumericConstantsExt for i32 {

 fn zero() -> Self { 0 }

 fn one() -> Self { 1 }

 }

}

mod user {

 use crate::example::NumericConstantsExt;

 fn test() {

 let zero = i32::zero();

 }

}

Working around the
Orphan Trait Rule
A common way to “work around” the Orphan
Trait Rule is by a design pattern known as
“extension traits”.

In this example, we implement new
functionality for i32, which is not allowed
directly.

Often times you will see the trait name
suffixed by Ext, meaning “extension”.

The orphan issue is solved. Why?

The user must explicitly import the trait…
7

mod example {

 pub trait NumericConstantsExt {

 fn zero() -> Self;

 fn one() -> Self;

 }

 impl NumericConstantsExt for i32 {

 fn zero() -> Self { 0 }

 fn one() -> Self { 1 }

 }

}

mod user {

 use crate::example::NumericConstantsExt;

 fn test() {

 let zero = i32::zero();

 }

}

How does .iter() work?
The Iterator type is actually a trait, which requires a
single method. Each different “kind” of iterator is
actually a struct which implements that trait.

This trait is implemented + optimized differently for
every type that supports iteration.

8

pub trait Iterator {

 type Item;

 // Required method

 fn next(&mut self) -> Option<Self::Item>;

 // A bunch of provided “helper” methods...

}
// core/src/slice/iter.rs

pub struct Iter<'a, T: 'a> {

 ptr: NonNull<T>,

 end_or_len: *const T,

 _marker: PhantomData<&'a T>,

}

The actual implementations often make use of
“unsafe” code for performance reasons. But
generally, no copy is performed. Instead, the
iterator struct references the base collection and
stores some metadata (e.g. iteration index).

How does .iter() work?
The Iterator type is actually a trait, which requires a
single method. Each different “kind” of iterator is
actually a struct which implements that trait.

This trait is implemented + optimized differently for
every type that supports iteration.

9

pub trait Iterator {

 type Item;

 // Required method

 fn next(&mut self) -> Option<Self::Item>;

 // A bunch of provided “helper” methods...

}
// core/src/slice/iter.rs

pub struct Iter<'a, T: 'a> {

 ptr: NonNull<T>,

 end_or_len: *const T,

 _marker: PhantomData<&'a T>,

}

The actual implementations often make use of
“unsafe” code for performance reasons. But
generally, no copy is performed. Instead, the
iterator struct references the base collection and
stores some metadata (e.g. iteration index).

Today: safety and performance

Performance:

● Spend lots of time running user code
● Run it quickly

Safety:

None of

● null pointer deref
● use after free
● double free

Why care about this? If we don’t have this?

Performance is only hard… if you have to maintain safety

10

How to make safety easy?
Imagine Rust but without references

● All values are owned
● Every value is

a. returned from a function, OR
b. freed at the end of the function

fn make_list() -> Vec<i32> {

 vec![0, 1, 2, 3]

 // vec is not deallocated, it's returned

}

fn main() {

 let l = make_list();

 // l is deallocated here

}

At compile time, know exactly where to insert
calls to malloc() and free()

● impossible to have dangling references

References are what make safety hard!

11

How to make safety hard?
Now consider references

● Regardless of language!

12

fn main() {

 let s = String::from("hello");

 let as_ref = &s;

 println!("{}", as_ref);

}

public static void main(String[] args) {

 // "Owned" list of strings

 List<String> stringList = new ArrayList<>();

 stringList.add("Hello");

 stringList.add("World");

 // Reference to element of list

 String s = stringList.get(0);

}

void main() {

 // "owned" string

 char* name = malloc(8);

 memcpy(name, "cis1905", 8);

 // reference into string

 char* number = name + 3;

}

How to make safety hard?
Now consider references

● Regardless of language!

13

void main() {

 // "owned" string

 char* name = malloc(8);

 memcpy(name, "cis1905", 8);

 // reference into string

 char* number = name + 3;

}

What happens when a reference outlives the
value it references?

● Let the reference dangle
● Extend the life of the referenced value

How to deal with reference outliving value?
Let the reference dangle

● Approach taken by C/C++
● Performance but no safety!

Extend the life of the referenced value

● Approach taken by Java/Python
● Safety but poor performance!
● (garbage collection)

14

Brief primer on garbage collection
Used in all languages that don’t have
malloc/free

public static Database setup() {

 List<String> clients = new ArrayList<>{}

 clients.add("ClientA");

 clients.add("ClientB");

 List<Client> client_list = makeClients(clients);

 List<Orders> orders = makeOrders(client_list, orders);

 List<Invoice> invoices = makeInvoices(clients, orders);

 Database db = makeDatabase(orders, invoices, clients);

 return db;

}

15

How to know how long values live?

Does clients get returned in
the db or can it be freed at the
end of setup? Impossible to know

Brief primer on garbage collection
Garbage collection:

1. Just put every value on the heap and
don’t worry about freeing it

2. When you get low on memory, walk
through every alive variable to find
values that are still reachable.

3. Free any value that isn’t reachable

16

Brief primer on garbage collection
Garbage collection guarantees

● An in-use value will never be freed
● When a value is no longer

accessible, it will eventually be freed

17

Developer never needs to free values 😊
Program periodically stops and all unused
values are freed 😥

Modern garbage collectors are fast…

But manually managing your memory
is (usually) faster

How to deal with reference outliving value?
Let the reference dangle

● Approach taken by C/C++
● Performance but no safety!

Extend the life of the referenced value

● Approach taken by Java/Python
● Safety but poor performance!
● (garbage collection)

18

Disallow compilation of program with dangling reference?

● All programs that compile are performant and safe
● But how?

Why can references dangle?
Where could the returned pointer point to?

● input argument name
● input argument job
● a local variable created during the

function
● a global variable

char* foo(char *name, char *job) {

 // implementation omitted

}

19

Some of these make a dangling reference, some
don’t

● If the compiler is going to detect dangling
references, it needs more information…

The same function but in Rust
Where could the returned pointer point to?

● input argument name
● input argument job
● a local variable created during the

function
● a global variable

Need to tell compiler

fn foo(name: &str, job: &str) -> &str {

 // implementation omitted

}

20

error[E0106]: missing lifetime specifier
--> lecture.rs:1:34
 |
1 | fn foo(name: &str, job: &str) -> &str {
 | ---- ---- ^ expected named lifetime parameter
 |
 = help: this function's return type contains a borrowed value, but the
signature does not say whether it is borrowed from `name` or `job`

The same function but in Rust
Where could the returned pointer point to?

● input argument name
● input argument job
● a local variable created during the

function
● a global variable

Need to tell compiler

21

fn foo3<'a>(name: &'a str, job: &'a str) -> &'a str

fn foo0<'a, 'b>(name: &'a str, job: &'b str) -> &'a str

fn foo1<'a, 'b>(name: &'a str, job: &'b str) -> &'b str

fn foo2(name: &str, job: &str) -> &'static str

The same function but in Rust
Where could the returned pointer point to?

● input argument name
● input argument job
● a local variable created during the

function
● a global variable

Need to tell compiler

22

fn foo3<'a>(name: &'a str, job: &'a str) -> &'a str

fn foo0<'a, 'b>(name: &'a str, job: &'b str) -> &'a str

fn foo1<'a, 'b>(name: &'a str, job: &'b str) -> &'b str

fn foo2(name: &str, job: &str) -> &'static str

Could be from name or job
(e.g. conditional)

The same function but in Rust
Where could the returned pointer point to?

● input argument name
● input argument job
● a local variable created during the

function
● a global variable

Need to tell compiler

23

fn foo3<'a>(name: &'a str, job: &'a str) -> &'a str

fn foo0<'a, 'b>(name: &'a str, job: &'b str) -> &'a str

fn foo1<'a, 'b>(name: &'a str, job: &'b str) -> &'b str

fn foo2(name: &str, job: &str) -> &'static str

Types allow reasoning about how functions
compose

Lifetimes allow reasoning about how
references compose

How to read lifetimes
fn main() {

 let substring;

 if read_from_file {

 let s = read_to_string(file_path);

 substring = find(&s, "fn main");

 } else {

 substring = "no file provided";

 }

 println!("{}", substring)

}

// find substring `target` in `s`

fn find<'a, 'b>(s: &'a str, target: &'b str)

 -> &'a str

24

find takes
● a str s that lives for duration ’a
● a str target that lives for duration ’b

It returns a str that can live for up to duration ’a

Is this program valid?
How do you know?

How to read lifetimes
fn main() {

 let substring;

 if read_from_file {

 let s = read_to_string(file_path);

 substring = find(&s, "fn main");

 } else {

 substring = "no file provided";

 }

 println!("{}", substring)

}

// find substring `target` in `s`

fn find<'a, 'b>(s: &'a str, target: &'b str)

 -> &'a str

25

find takes
● a str s that lives for duration ’a
● a str target that lives for duration ’b

It returns a str that can live for up to duration ’a
error[E0597]: `s` does not live long enough
 |
4 | let s = read_to_string(file_path);
 | - binding `s` declared here
5 | substring = find(&s, "fn main");
 | ^^ borrowed value does not live long enough
6 | } else {
 | - `s` dropped here while still borrowed
...
9 | println!("{}", substring)
 | --------- borrow later used here

Appendix: find implementation
fn find<'a, 'b>(s: &'a str, target: &'b str) -> &'a str {

 for i in 0..s.len() {

 let snippet = &s[i..(i + target.len())];

 if snippet == target {

 return snippet;

 }

 }

 panic!("Not found");

}

26

Where do lifetimes come from?
Lifetime:

● starts when a value can first be referred
to*

● ends when a value can not be referred to*

Lifetimes are implicit

● Never explicitly declared by programmer

fn main() {

 let substring;

 if read_from_file {

 let s = read_to_string(file_path);

 substring = find(&s, "fn main");

 } else {

 substring = "no file provided";

 }

 println!("{}", substring)

}

27

*variable lifetimes are complicated and usually
you don’t need to think too hard. As a rule of
thumb, a variable’s lifetime is equal to its scope.

Another lifetime example
fn main() {

 let s1 = String::from("foobar");

 let mut longest = s1.as_str();

 for i in 0..100 {

 let s2 = i.to_string();

 longest = longer(&s1, &s2);

 }

 println!("{}", longest);

}

fn longer<'a>(s1: &'a str, s2: &'a str)

 -> &'a str {

 if s1.len() > s2.len() {

 s1

 } else {

 s2

 }

}

28

Is it valid to call longer with s1 and s2 as
arguments?

Another lifetime example
fn main() {

 let s1 = String::from("foobar");

 let mut longest = s1.as_str();

 for i in 0..100 {

 let s2 = i.to_string();

 longest = longer(&s1, &s2);

 }

 println!("{}", longest);

}

fn longer<'a>(s1: &'a str, s2: &'a str)

 -> &'a str {

 if s1.len() > s2.len() {

 s1

 } else {

 s2

 }

}

29

s1 lives at least duration ‘a
s2 lives at least duration ‘a
return value lives at most duration ‘a

One more lifetime example
const program_name: &str = "Theseus";

fn get_program_name () -> &str {

 program_name

}

Ok… but we don’t have any lifetimes
to use

30

error[E0106]: missing lifetime specifier
--> lecture.rs:3:26
 |
3 | fn get_program_name() -> &str {
 | ^ expected named lifetime parameter

One more lifetime example
const program_name: &str = "Theseus";

fn get_program_name () -> &'static str {

 program_name

}

Ok… but we don’t have any lifetimes
to use

31

’static lifetime: the lifetime of the
entire program duration

Back to safety and performance
Safety goal: never have dangling references Performance goal: avoid using garbage

collection

32

Lifetime annotations enable the compiler to disallow
programs that cause dangling references

● avoid garbage collection
● maintain safety

Advanced usage: lifetimes in structs
struct BookPage {

 number: u32,

 content: &str,

}

33

error[E0106]: missing lifetime specifier
--> lecture.rs:3:14
 |
3 | content: &str,
 | ^ expected named lifetime parameter
 |

Advanced usage: lifetimes in structs
Structs with references need to expose their
lifetime parameter

struct BookPage<'a> {

 number: u32,

 content: &'a str,

}

34

fn later_page<'a>(p1: BookPage<'a>, p2: BookPage<'a>) -> BookPage<'a>

{

 if p1.number > p2.number {

 return p1;

 } else {

 return p2;

 }

}

References in structs are tricky: if you find
yourself doing this make sure there isn’t a

better way

Final notes: lifetime elision
We’ve previously seen code like this. Why no
lifetime annotations required?

fn prefix(s: &str) -> &str {

 &s[0..3]

}

35

In simple cases, the Rust compiler will infer
lifetimes to make things easier

● If the return type is not a reference
● If the return type is a reference and only

one input is a reference

https://doc.rust-lang.org/nomicon/lifetime-elision.html

Quiz
struct Foo<'a> {

 bar: &'a i32

}

fn baz(f: &Foo) -> &i32

{

 /* omitted */

}

Will this compile? If so, what lifetime
annotations will be inferred?

36

Quiz
struct Foo<'a> {

 bar: &'a i32

}

fn baz<'a, 'b>(f: &'a Foo<'b>) -> &’??? i32

{

 /* omitted */

}

Two separate lifetimes in the input

● can’t infer output lifetime without
ambiguity

37

Will this compile? If so, what lifetime
annotations will be inferred?

Yes but… what if my code is too complicated?
What if I need mutable and immutable
references at the same time?

What if I need to express reference logic but
the compiler won’t accept my lifetime
annotations?

38

Rust does it’s analysis at compile time when
possible.

If you can’t fit within those bounds, use built-in
types that offload safety checks to run-time

Topic of next lecture

Anonymous Functions/Closures

39

Another side to performance
Can we allow high level programming patterns
while maintaining performance?

let rainfall nums =

 nums |>

 take_while (fun x -> x != -999) |>

 filter (fun x -> x >= 0) |>

 mean

40

As a case study: higher-order list functions vs. loops

Iterators and lambdas
fn rainfall(nums: Vec<i32>) -> Option<f64> {

 let valid_nums: Vec<i32> = nums

 .into_iter()

 .take_while(|&x| x != -999)

 .filter(|&x| x >= 0)

 .collect();

 mean(valid_nums);

}

let rainfall nums =

 nums |>

 take_while (fun x -> x != -999) |>

 filter (fun x -> x >= 0) |>

 mean

41

How do we translate this to Rust?
● need iterator functions
● need anonymous functions

Iterators and lambdas
fn rainfall(nums: Vec<i32>) -> Option<f64> {

 let valid_nums: Vec<i32> = nums

 .into_iter()

 .take_while(|&x| x != -999)

 .filter(|&x| x >= 0)

 .collect();

 mean(valid_nums);

}

let rainfall nums =

 nums |>

 take_while (fun x -> x != -999) |>

 filter (fun x -> x >= 0) |>

 mean

42

How do we translate this to Rust?
● need iterator functions
● need anonymous functionsAnonymous functions

Iterator functions

Iterators and lambdas
fn rainfall(nums: Vec<i32>) -> Option<f64> {

 let valid_nums: Vec<i32> = nums

 .into_iter()

 .take_while(|&x| x != -999)

 .filter(|&x| x >= 0)

 .collect();

 mean(valid_nums);

}

43

Anonymous functions

Iterator functions

Once you’ve called iter/into_iter/iter_mut,
many iterator functions are available

● map
● filter
● fold
● take_while
● flat_map
● filter_map
● zip
● https://doc.rust-lang.org/std/iter/trait.Iterator.html

https://doc.rust-lang.org/std/iter/trait.Iterator.html

Iterators and lambdas
fn rainfall(nums: Vec<i32>) -> Option<f64> {

 let valid_nums: Vec<i32> = nums

 .into_iter()

 .take_while(|&x| x != -999)

 .filter(|&x| x >= 0)

 .collect();

 mean(valid_nums);

}

44

Anonymous functions

Iterator functions

Once you’ve called iter/into_iter/iter_mut,
many iterator functions are available

● map
● filter
● fold
● take_while
● flat_map
● filter_map
● zip
● https://doc.rust-lang.org/std/iter/trait.Iterator.html

What about these?

https://doc.rust-lang.org/std/iter/trait.Iterator.html

Anonymous Functions
Allows defining short-lived functions

● Type annotations optional
● Abbreviated syntax
● Used frequently in iterator functions

fn add_one_v1 (x: u32) -> u32 { x + 1 }

let add_one_v2 = |x: u32| -> u32 { x + 1 };

let add_one_v3 = |x| { x + 1 };

let add_one_v4 = |x| x + 1 ;

45

Closures
More than just a function

● can access values that are in scope when
they’re defined

● function + environment

fn add_num(v: &mut Vec<i32>, value: i32) {

 let my_fn = |x| {*x += value};

 v.iter_mut().for_each(my_fn);

}

46

Quiz(?)
Does this code compile? fn take(v: Vec<i32>) {}

fn main() {

 let v = Vec::new();

 let my_fun = || { take(v) };

 my_fun();

 my_fun();

}

47

function

Quiz(?)
Does this code compile? fn take(v: Vec<i32>) {}

fn main() {

 let v = Vec::new();

 let my_fun = || { take(v) };

 my_fun();

 my_fun();

}

48

function

note: closure cannot be invoked more than once because it moves
the variable `v` out of its environment
 |
5 | let my_fun = || take(v);
 |

Tricky closures
Three different traits that govern functions

● Fn -> immutable access to environment

● FnMut -> mutable access to environment

● FnOnce -> moves values out of
environment

fn main() {

 let mut v = Vec::new();

 let impls_fn = || { println!("{}", v)

};

 let impls_fnmut = || { v.push(1) }

 let impls_fnonce = || { take(v) };

}

49

Noticing a pattern? Behavior changes based on
● reference
● mutable reference
● owned value

Keeping these cases separate gives the Rust compiler
enough info to check many things at compile time

Iterators and lambdas
fn rainfall(nums: Vec<i32>) -> Option<f64> {

 let valid_nums: Vec<i32> = nums

 .into_iter()

 .take_while(|&x| x != -999)

 .filter(|&x| x >= 0)

 .collect();

 mean(valid_nums);

}

50

What’s this?

Collect: turning iterators back to collections

51

Vec HashMap Array String …

Iterator

Vec HashMap Array String …

iter()
into_iter()
iter_mut()

collect()

iterator
functions

Loops vs. Iterators: rainfall performance
fn iter(v: &Vec<i32>) -> f32 {

 let valid_nums: Vec<i32> = v

 .iter()

 .take_while(|&&x| x != -999)

 .cloned()

 .filter(|&x| x >= 0)

 .collect();

 if valid_nums.len() == 0 {

 0.0

 } else {

 valid_nums.iter().fold(0, |n, &a| n + a)

as f32 / valid_nums.len() as f32

 }

}

fn loops(v: &Vec<i32>) -> f32 {

 let mut valid_nums = Vec::new();

 for x in v {

 match x {

 -999 => break,

 &x if x >= 0 => valid_nums.push(x),

 _ => {}

 };

 }

 if valid_nums.len() == 0 {

 0.0

 } else {

 valid_nums.iter().fold(0, |n, &a| n + a)

as f32 / valid_nums.len() as f32

 }

}

52
https://doc.rust-lang.org/book/ch13-04-performance.html

Appendix: comparing generated code
Comparing generated code when using loops vs
iterators

https://godbolt.org/z/qePhnhzvY

53

https://godbolt.org/z/qePhnhzvY

