Lecture 4

Generics and Traits



Enum sizing

struct Node { enum Option<u32> {
value: u32, Some (u32),
next: Box<Node>, None,
} }
Size of Node? Sum of members. Size of Option? Size of largest member, plus up

to 8 bytes for tracking which variant is active

std::mem::size of::<Node>() == 4 + 8; size of<Option<u32>>() == 4 + max (4,

Some (9) : 0x00000001 0x00000009
None: 0x00000000 0x00000000



Enum sizing Optimization

enum Option<&u32> {
Some (&u32),

None,

Some (0x32ab0012): 0x00000001 0x32ab0012
None: 0x00000000 0x00000000

But wait! References are guaranteed to never
be null, so we can optimize.

Some (0x32ab0012) : 0x32ab0012
None: 0x00000000

enum Option<u32> {
Some (u32),

None,

Size of Option? Size of largest member, plus up
to 8 bytes for tracking which variant is active

size of<Option<u32>>() == 4 + max (4,

A

Some (9) : 0x00000001 0x00000009
None: 0x00000000 0x00000000



Automatic referencing in method calls

struct Point (132, 132);
impl Point {
fn takes ref (&self) {}

fn takes ownership (self) {}

fn main () {
let as owned = Point (1, 2);
let as ref = &as owned;

// auto reference
as_owned.takes ref ();
// auto dereference

as_ref.takes ownership ();

self parameter will be automatically
referenced and dereferenced to match method
call

e Only happens to self parameter, not
other parameters



PLQ Questions



When to use Option vs Result?

It's a bit of a blurry distinction, but there are some rules of thumb.

e Ifit's more of an “exists” rather than an “error” relationship, definitely use Option
o E.g.querying an element from a collection

e |f you don’t care about the “error” value, then you might want to use an Option
o  Consider future extensibility

e Exceptional circumstances (e.g. a server is down, no disk space), use a Result

Ultimately it's up to you, no choice is “wrong” per se—it’'s more philosophical in nature.



Common Result design patterns

Enums are a great way to package multiple error types into one.

enum MyError {
IoError (IoError),

ServerError (ServerError),



Common Result design patterns

Sometimes it's convenient to just make your error type & ' static str.

fn fallible () -> Result<T, &'static str> {
//

1f (error condition) {

return Err ("error description goes here");

/...



How is drop implemented?

Normal Rust function or compiler magic?

How would you implement it?
fn my drop(value: String) ({}

fn main() {

let my string = "Hello, world!".to owned();

my drop(my string);



fn my_drop(value: String) %

fn main() %
let my_string = "Hello, world!".to_owned();

my_drop(my_stzing);

println! ("fmy_stringi");

Diagnostics:

value borrowed here after move [EO382]

2. borrow of moved value: "my_string’
value borrowed here after move [E0382]

Works like expected

10



Type ‘S’ or ‘/’ to search, ‘?’ for more options...

std::mem

Function

Source Settings Help Summary

pub fn drop<T>(_x: T)

v Disposes of a value.
This does so by calling the argument’s implementation of Drop.

This effectively does nothing for types which implement Copy, e.g. integers. Such values are copied and then moved into the
function, so the value persists after this function call.

This function is not magic; it is literally defined as
pub fn drop<T>(_x: T) {}

Because _x is moved into the function, it is automatically dropped before the function returns.

https://doc.rust-lang.org



https://doc.rust-lang.org

More ways to use Option

unwrap(self)

unwrap_or(self, default: T)

unwrap_or_default(self)

map(self, f: F)

and_then(self, f: F)

Returns the inner value, otherwise panics.

Returns the inner value, otherwise some “default’ value.

Same as above, but uses the Default trait instead (will discuss this).

Uses a closure to transform the inner value.

If self is None, then the function returns None
If self is Some(x), then it calls f(x) and returns Some (f(x))

Same as map, but “flattens” the returned value.

If self is None, then the function still returns None

If self is Some(x), then it calls f(x) and returns f(x)
Requires that f returns an Option

Rust’s equivalent of a monadic bind operator

12



Today: Generics



Generics: Motivating Example

enum NumOption {
Some (u32),

None

enum Option<T> ({
Some (T),

None

Boo! Bad!

e Need to duplicate code for every option
type you want

e Need to duplicate functions that take
Option to work on every option type

Yes! Better!

e Template for declaring any kind of
Option you need

e Lets you define functionality for an
Option of any type

14



Generics

enum Result<T, E>
Ok (T),
Err (E),

fn first<T,U>(x:

X

{

T,

y: U)

-> T {

Structs or enums can be generic over one or
more types

Correspondingly, functions can be generic over
one or more types

15



Using Generic Types

enum Opt<T> {

Some (T),
None

}

fn main() {

// type 1is inferred, annotation is optional

let x: Opt<bool> = Opt::Some (true);

Struct generic types are often inferred

16



Calling generic functions

fn first<T,U>(x: T, y: U) -> T {

X

fn main () {
// automatically infers the type of T and U
first(l, "hello");
// Manually specify type of T and U
first::<u32, &str>(1, "hello");

turbofish ::<>

Funky syntax to manually specify
function generics. Helps resolve a
parsing ambiguity that’s presentin
C++

17



How do impl and Generics Interact?

enum Opt<T> ({
Some (T),
None

}

impl Opt<T> {
fn unwrap (self) -> T {
match self {
Opt::Some (v) => v,

Opt::None => panic! ()

What's wrong with this?

error[E0412]: cannot find type 'T  in this scope
--> scratch.rs:337:10
I
337 | impl Opt<T> {
| A not found in this scope

18




How do impl and Generics Interact?

enum Opt<T> { Generic impl block
Some (T), . .
“For all T, there is an impl for the type Opt<T>"
None
} Why would you ever not impl<T>?
impl<T> Opt<T> { impl Opt<u32> {

fn unwrap (self) -> T { fn unwrap (self) -> u32 {

match self { match self {

Opt::Some (v) => v, Opt::Some (v) => v,

Opt::None => panic! () Opt::None => panic! ()

19



How do impl and Generics Interact?

enum Opt<T> { Different levels of generics

Some (T),
e Tisin scope for the entire imp1l block

None . .
} e U is local to the function scope

impl<T> Opt<T> {
fn swap<U>(&self, value: U) -> Opt<U> {

20



More Advanced impls

impl<T> Opt<Opt<T>> {
fn flatten (self) -> Opt<T> {
match self {
Opt::Some (Opt::Some (x)) => Opt::Some (x),
Opt::Some (Opt::None) => Opt::None,
Opt::None => Opt::None

Impl blocks can be for arbitrarily
complex types, not just simple structs
or enums

21



How are Generics Implemented?

enum Opt<T> {

Some (T),
None

}

fn main () {

let x: Opt<bool>

Opt::Some (true) ;

Q: What is a generic type?

A: Instructions for how to generate code for a
specific Opt like Opt<u32>. No code generated

Code generated only for case Opt<bool>.
Exact same code as if you had written BoolOpt
manually

No runtime cost

Some compile time cost
Some binary size cost
Same as C++
“Monomorphization”

22



Comparing Options

How to write a function that takes two
Options and

1. If both are Some, returns true if the first is
greater than the second
2. Otherwise, returns None

23



Comparing Opts

fn opt gr<T>(a: Opt<T>, b: Opt<T>)

match (a, b) {
(Opt::Some (x),
_ => Opt::None

Opt::Some (y))

-> Opt<bool> {

=> Opt::Some(x > vy),

24



Comparing Opts

fn opt gr<T>(a:

match

(Opt::Some (x),

Opt<T>, b: Opt<T>) -> Opt<bool> {

(a, b) |

Opt::Some(y)) => Opt::Some(x > y),

_ => Opt::None

error[E0369] : binary operation "> cannot be applied to type
--> scratch.rs:3:53

3 (Opt::Some(x), Opt::Some(y)) => Opt::Some(x > vy),

A

|

| - -
I I

| T

st

25



Comparing Opts

fn opt gr<T>(a:

match

(Opt::Some (x),

(a,

b)

da Shvxa@
b: Opt<?>)

Bashwap
Opt<a>,

{

-> Opt<bool> {

777

Opt::Some(y)) => Opt::Some(x > y),

_ => Opt::None

Ho

snMaP

error[E0369]: binary operation "> cannot be applied to type “2°
--> scratch.rs:3:53

3 (Opt::Some(x), Opt::Some(y)) => Opt::Some(x > vy),

I

| _A_T
I I

I T

26



Takeaway

impl<T>and fn foo<T> aren’t very useful :(

You can’t do much with T:

N

Return it

Wrap it in a struct/enum
Pass it to another function
Not much else

What might we want to do with T?

Addition/subtraction
Printing

Copying

Checking equality
Dereference

27



Bringing Order

fn opt gr<T: Ord>(a: Opt<T>,
match (a, b) {

b: Opt<T>) -> Opt<bool> {

(Opt::Some (x), Opt::Some(y)) => Opt::Some(x > vy),

_ => Opt::None

Can'tcall opt_gr with justany T

e [ hasto have an order

Ord is a “trait”

28



Traits



Traits

trait TolInt {

fn to int (&self)

}

impl ToInt for f£32 {

fn to int (&self)

self.to bits()

fn add<T: ToInt>(a: T, b:

a.to int ()

+ b.to Int()

-> u32;

-> u3Z2 |

T)

-> u32 {

Traits define a set of methods without
implementations

Types can provide implementations to
“Implement” that trait

“f32 implements ToInt”

Generic functions can restrict inputs to
only types that implement a certain trait

Yes, they're similar to interfaces

30



Traits

fn foo<T: ToInt + Ord>(a:
if a > b {
a.to int ()
} else {

b.to int()

T,

b:

T)

-> ul32 {

Without types, function arguments could
be anything. Types restrict the domain of
arguments

Without traits, function generics could be
anything. Traits restrict the domain of
generics

31



In an alternate universe...

fn opt gr<T>(a: Opt<T>, b: Opt<T>) -> Opt<bool> {
match (a, b) {
(Opt::Some (x), Opt::Some(y)) => Opt::Some(x > vy),
_ => Opt::None

a0 What if this compiled? ) And this didn’t?
opt gr ( opt gr (
Opt::Some (1), Opt::Some (HashMap::new()),
Opt::Some (2)); Opt::Some (HashMap::new()))

} }

|s this better or worse than the way Rust does things?

32



Common Trait Speedrun!

Traits are great for abstracting your own code
by organizing shared behavior, but there's also
many useful traits built in to the standard
library that the language treats specially.

Let’'s explore some...

33



Common Trait Speedrun: Default

trait Default { Default is implemented by types that
fn default () -> Self; have a default value

e Requires a zero-argument function
that returns the type.

fn main () {

let x: String = Default::default ();

What's this?
fn main () { Self refers to the type that the current
let x: u32 = Default::default (); impl block is for

let o: Option<String> =
Default::default () ;
}

Almost like overloading! 34



Common Trait Speedrun: Clone

trait Clone {

fn clone (&self) -> Self;

fn main () {

let sl = String::new("Hello");

let s2 = sl.clone()

Clone is implemented by types that can be
deep-copied

35



Common Trait Speedrun: Display/Debug

trait Display {
fn fmt (&self, f: &mut Formatter)

-> Result< (), Error>;

trait Debug {
fn fmt (&self, f: &mut Formatter)
-> Result<(), Error>;
}

fn main () {
let s = String::new ("Test\n");
// Uses Display
println! ("{}", s);
// Uses Debug

println! ("{:?}", s);

Display and Debug define how a value can be
converted to a string for printing

e Display for a user-facing representation
e Debug for a developer-facing
representation

Instead of returning a string directly, work with
a Formatter object to allow additional
configuration (e.g. padding)

36



Quiz Time

fn £<T: /* 2272 */>(t:

let t2 = t.clone();

println! ("{}",

t2);

&T)

{

What is the smallest set of trait bounds
on T needed to make this function
type-check?

A: Clone
B: Clone + Display
C:Clone + Display + Debug

D: <none>

37



Common Trait Speedrun: PartialEq

trait PartialEqg { PartialEqis for types that can be compared
fn eqg(&self, other: &Self) -> bool; for equality

symmetricca==b->b==2

transitive:a==b && b==c->a==c

}
impl PartialEg for u32 { ... }

fn main () {
let x: u32 = 1;
let y: u32 = 2;
X == y;

Compiler uses PartialEq impl for == operator 38




Common Trait Speedrun: PartialEq

trait PartialEqg { PartialEqis for types that can be compared
fn eqg(&self, other: &Self) -> bool; for equality

symmetricca==b->b==2
fn ne (&self, other: &Self) -> bool {

!self.eqg(other) transitive:a==b && b==c->a==c
}
}
impl PartialEg for u32 { ... }
What's this?
fn main () {
let x: u32 = 1; “Provided method"—implemented for free once
let y: u32 = 2 you implement the required methods
X == YVy
x '=7vy;

Compiler uses PartialEq impl for == operator 39




Ok, but where's plain old EQ?
Common Trait Speedrun: PartialEq

trait PartialEqg { PartialEqis for types that can be compared
fn eqg(&self, other: &Self) -> bool; for equality

symmetricca==Db ->b ==
fn ne (&self, other: &Self) -> bool {

!'self.eqg(other) transitive:a==b && b==c->a==c

}
}
e}

impl PartialEg for u32 {

What's missing here?

\/\llldLb LSy

fn main () { . .
let x: u32 = 1; Proylded method —mplemented for free once
you implement the required methods
let y: u32 = 2;
X == YVy
x =7y

Compiler uses PartialEq impl for == operator 40




Common Trait Speedrun: Eq

trait Eq: PartialEq { } Eq is for equality relations

impl Eg for u32 {} i
symmetricca==b->b==a

transitive:a==b && b==c->a==c

reflexive: a == a

What's this?

“Trait inheritance™—a type can only be Eq if itis
also PartialEq.

What's this?

“Marker trait"—note to the compiler that says this
type has the properties associated with Eq

41



Common Trait Speedrun: Copy

trait Copy: Clone { }

impl Copy for u32 {}

fn main() {
let x: u32 = 1;
let v = x;
println! ("{} and {}",

Xy

Copy is for types that can be trivially copied

42



Common Trait Speedrun: ToString

trait ToString { ToString types can be converted to a string
fn to string(&self) -> String;

impl<T: fmt::Display> ToString for T {
fn to string(&self) -> String ({ “k\~ What's this?

} “Blanket Implementation™—if T implements
Display then T implements ToString

43



Takeaways so far

We can use built-in operators on custom types
by implementing certain built-in traits

Next up: using built-in arithmetic operators

44



Case Study: Multiplication

struct Vec3 (£32, £32, £32);

fn main() {
let a = Vec3(1.0, 2.0, 3.0);
let b = Vec3(4.0, 5.0, 6.0);

let ¢ = a * b;

Goal: use * operator on custom Vec3
type for element-wise product.
Challenge: how to define Mul trait?

trait Mul {

fn mul (self, other: &Self)
}

impl Mul for Vec3 {

fn mul (self, other: &Self)
Vec3(self.0 * other.O,
self.l * other.1,

self.?2 * other.2)

-> Self;

-> Self {

45



Case Study: Multiplication

struct Vec3 (£32, £32, £32);
struct Scalar (£32);
fn main() {

let a = Scalar(2.0);

let b = Vec3(4.0, 5.0, 6.0);

let ¢ = a * b;

Goal: use * operator on Scalar and
Vec3.
Challenge: how to define Mul trait?

trait Mul {

fn mul (self, other: &Self)
}
impl Mul for Vec3 {

fn mul (self, other: &Self)
Vec3(self.0 * other.O,
self.l * other.1,

self.?2 * other.2)

-> Self;

-> Self {

46



Case Study: Multiplication

struct Vec3 (£32, £32, £32); trait Mul {
struct Scalar (£32);

fn main() { fn mul (self, other: &Self) -> Self;
let a = Scalar(2.0); }

let ¢ = a * b;
} fn mul (self, other: &Vec3) -> Self ({
Vec3 (self * other.0O,
self * other.1,

: *
Goal: use * operator on Scalar and self  * other.?2)

Vec3.
Challenge: how to define Mul trait?



Case Study: Multiplication

I\ Not generic enough! /1

L L hlvd ISRy eEaNe) Feliole) NelaRaIY trait Mul {

error[E0053] : method "'mul’ has an incompatible

type for trait

-=> scratch.rs:24:25 fn mul (self, other: &Self) -> Self;

|
24 | fn mul (self, other: &Vec3) -> Self { }

I ANAAN expected '
‘Scalar’, found ‘Vec3" impl Mul for Scalar {

fn mul (self, other: &Vec3) -> Self {
Vec3 (self * other.0O,
Goal: use * operator on Scalar and e T omen
self * other.2)

Vec3. }
Challenge: how to define Mul trait? }



Case Study: Multiplication

struct Vec3 (£32, £32, £32); trait Mul {
struct Scalar (£32);

fn main() { fn mul (self, other: &Self) -> Self;
let a = Scalar(2.0); }

let ¢ = a * b;
} fn mul (self, other: &Vec3) -> Self ({
Vec3 (self * other.0O,
self * other.1,

: *
Goal: use * operator on Scalar and self  * other.?2)

Vec3.
Challenge: how to define Mul trait?



Case Study: Multiplication

struct Vec3 (£32, £32, £32); trait Mul<Rhs> {
struct Scalar (£32);

fn main() { fn mul (self, other: &Rhs) -> Self;
let a = Scalar(2.0); }
let b = Vec3(4.0, 5.0, 6.0); impl Mul<Vec3> for Scalar ({

let ¢ = a * b;
} fn mul (self, other: &Vec3) -> Self ({
Vec3 (self * other.0O,
self * other.1,

: *
Goal: use * operator on Scalar and self  * other.?2)

Vec3.
Challenge: how to define Mul trait?



Case Study: Multiplication i, Not always true!

struct Vec3(£32, £32, £32); trait Mul<Rhs> {

struct Scalar (£32);

fn main() { fn mul (self,
let a = Scalar(2.0); }
let b = Vec3(4.0, 5.0, 6.0);
let ¢ = a * b;

} fn mul (self,

other: &Rhs)

impl Mul<Vec3> for Scalar {

other: &Vec3)

error[E0308] : mismatched types
--> scratch.rs:3:9

2 | fn mul (self, other: &Vec3) -> Self {
| ---- expected "Scalar’
31/ Vec3 (self * other.0,
4 | | self * other.1,
51 | self * other.2)
[

~ expected "Scalar , found "Vec3®

* other.0O,
* other.1,

* other.2)

-> Self;

-> Self {

51



Case Study: Multiplication

struct Vec3 (£32, £32, £32); trait Mul<Rhs> {
S . ; type Output;
i “ASSOCiated Type”_type aSSOCiated fn mul (self, other: &Rhs) -> Output;
with a specific trait impl }
impl Mul<Vec3> for Scalar {
type Output = Vec3;
} fn mul (self, other: &Vec3) -> Output {

Vec3 (self * other.0O,
self * other.1,

: *
Goal: use * operator on Scalar and self  * other.?2)

Vec3.
Challenge: how to define Mul trait?

52



Case Study: Multiplication

Final Implementation—fully generic

Arbitrary left type, right type, and output
type

trait Mul<Rhs> {

type Output;

fn mul (self,

}

impl Mul<Vec3> f
type Output =

fn mul (self,
Vec3 (self
self
self

other: &Rhs)

or Scalar {

Vec3;

other: &Vec3)
* other.0O,
* other.1,

* other.2)

-> Output;

-> Output

53



Common Trait Speedrun: From

trait From<T> {

fn from(value: T) -> Self;

impl From<A> for B {

impl From<&String> for String {

fn from(value: &String) -> String {

From is for type to type conversions

If you see an impl like this, read it as “B can be
made from A”

An example implementation. How can we make
a String given an &String?

54



Common Trait Speedrun: Into

trait Into<T> ({ Into isthe opposite of From
fn into(self) -> T;

}

impl Into<String> for &String {

fn into(self) -> String { Can implement very similarly to From

e Seems sort of redundant...

}

// In standard library: Never need to implement Into, just implement
impl<T, U: From<T>> Into<U> for T { Fromand Into will be implemented
fn into(self) -> U { automatically. Into is more of a convenience.

U::from(self)

55



Common Trait Speedrun: Using Into

trait Into<T> {

fn into(self) -> T;

Into isthe opposite of From

fn write to file(data: Vec<u8>)

fn main() {

Sometimes type mismatches can be frustrating
{

write to file("Hello");

error[E0308] : mismatched types
--> scratch.rs:6:19

I
6 | write to file("Hello");

| —=—————————— Aanannnn axpected Vec<u8>", found " &str’

| arguments to this function are incorrect

56



Common Trait Speedrun: Using Into

trait Into<T> {
fn into(self) -> T;
}

fn write to file(data: Vec<u8>) {

fn main() {

write to file("Hello".into()):;

Into isthe opposite of From

Sometimes type mismatches can be frustrating

57



Common Trait Speedrun: Using Into

trait Into<T> {

}

fn into(self) -> T;

Into isthe opposite of From

fn write to file<T: Into<Vec<u8>>>(data:

let data = data.into();

fn main () {

write_to_file("Hello");
write to file(vec![3, 4, 5, 6, 7]);

T)

{

If you control the API, you can
also use this neat little trick.

Rust doesn’t support
overloaded functions, so this is
as close as you can get.

Probably best to use this
sparingly.

58



Common Trait Speedrun: Fn

pub fn map<T, U, F: Fn(T) -> U>(list: &[T], f:

Fn: trait and special syntax for declaring
function types

E)

-> &[U];

59



Common Trait Reference

Default types have a default value
Clone types can be deep copied
Copy types can be cloned by a bit-wise copy

PartialEq (PartialOrd) types can be
compared with a partial equality (order) relation

Eq (0rd) types can be compared with an
equality (total order) relation

ToString types can be converted to a string

Debug types can be converted to a
developer-facing string representation

Display types can be converted to a
user-facing string representation

Add<T>, Mul<T>, Sub<T>, Div<T> types can
be summed/producted/differenced/divided with
a value of type T

From<T> types can be created from a value of
type T

Into<T> types can be converted to a value of
type T

Fn(T, U,...) -> Vtypes can be called with
the corresponding parameters and return type

60
e.g. https://doc.rust-lang.org/std/convert/trait.Into.html



Deriving Traits

# [derive (Debug) ]
struct Id {
id: u32

fn main () |
let id = Id { id: 1905 };
println! ("{:2}", 1id);

Recall from last time... but now we understand!

#[derive(...)] syntaxinvokes a macro, a
function that takes the code for your struct (or
enum) as input and produces more code as

output. In this case, a trait implementation.

61



Deriving Traits

# [derive (Debug, Clone, Copy,

PartialEq) ]
struct Id {
id: u32

fn main () {

let id = Id { id:

println! ("{:2}",

1905 };
id) ;

Recall from last time... but now we understand!

#[derive(...)] syntaxinvokes a macro, a
function that takes the code for your struct (or
enum) as input and produces more code as

output. In this case, a trait implementation.

62



How are Traits Implemented?

. . J ik nerics, no runtim t
fn write to file(data: Vec<u8>) { ust like generics, no runtime cos

e compiler statically determines which
} function to call based on type inference

fn main () {

write to file("Hello".into()):




Dowsides of traits: hard to read docs?

Function std::fs::write E

pub fn write<P: AsRef<Path>, C: AsRef<[u8]>>(path: P, contents: C) -> Result<()>

1.26.0 - source - [-]

64




Upside of traits: high level reasoning

pub fn sort by key<K, F>(smut self, f: F) Determine the types before writing the
where implementation

F: FnMut (&T) -> K,

K: Ord,

65



Overview of traits

Functions, structs, and enums can be generic.

To restrict the types that the generic can be
instantiated with, use traits

Traits define a set of methods a type must
implement

Trait Inheritance: some traits can only be
implemented if another trait is implemented as
well

Marker traits: traits with no methods

Provided methods: methods that are
automatically defined in terms of other trait
methods

Generic traits: makes a trait generic over a type

Associated types: types that implement this
trait must also specify what the associated type
is

66



Further reading

Common Rust Traits

The Rust Book 10.2

Rust By Example

CS242 Notes

67


https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/rust-by-example/generics/gen_trait.html
https://stanford-cs242.github.io/f19/lectures/07-1-traits#partial-parametric-polymorphism

