
Lecture 2
Ownership

1

“Participation”
“Participation” ≠ “Mandatory Attendance”

Please do come to class if you can! We try to
make it valuable.

If not, you can also participate on EdStem by
asking questions as you go through the
readings/slides

https://www.cis.upenn.edu/~cis1905/2024fall/syllabus/
2

Clarifications After Lecture 1
● Statements/expressions/semicolons/return

3
https://doc.rust-lang.org/book/ch03-03-how-functions-work.html

In Rust, the return value of the function is synonymous with the value of the final expression
in the block of the body of a function. You can return early from a function by using the return
keyword and specifying a value, but most functions return the last expression implicitly.

● Declarative vs. imperative
○ read as functional vs. object-oriented

● Stack/heap/memory/pointers
○ Covered today!

let

everything
else

Today: Ownership!
But first: the stack and heap

4

Where can data be allocated?
Static memory Stack Heap

How long
does it live?

Entire program
lifetime Until end of function Until explicitly

deallocated with free

static float PI = 3.14;

OR
char *s = "cis1905";

Example?
void foo() {

 Point p = {.x=1,.y=2};

}

char *init_username() {

 char *s;

 malloc(&s, username_length);

 ...

}

void drop_username(char *s) {

 free(s);

}

Pros/Cons? Zero cost
Fixed-size

Low performance cost
Can’t outlive function

Supports allocations of
unknown size
Error-prone 5

(in C)

Heap Programming Challenges
int main() {

 char *s1;

 malloc(&s1, 5);

 *s1 = {'p','e','n','n','\0'};

 char *s2 = s1;

 free(s1);

 printf("%s\n", s2);

Stack Heap

char *s1 <un-init>

<un-init>

'p'

'n'

'n'

'\0'

'e'

<un-init>

<un-init>

...

char *s2

6

Heap Programming Challenges
Stack Heap

<un-init>

<un-init>

char *s1

<un-init>

<un-init>

...

<un-init>

<un-init>

char *s2

<un-init>

<un-init>

<un-init>

7

int main() {

 char *s1;

 malloc(&s1, 5);

 *s1 = {'p','e','n','n','\0'};

 char *s2 = s1;

 free(s1);

 printf("%s\n", s2);

Heap Programming Challenges
Stack Heap

char *s1 <un-init>

<un-init>

<un-init>

<un-init>

...

char *s2

<un-init>

<un-init>

<un-init>

<un-init>

<un-init>

8

 free(s2);

int main() {

 char *s1;

 malloc(&s1, 5);

 *s1 = {'p','e','n','n','\0'};

 char *s2 = s1;

 free(s1);

 printf("%s\n", s2);

What went wrong here?
1. Shallow copies vs. deep copies
2. Who is in charge of freeing data?

9

char *s1 char *s2

'n' 'n' '\0''e''p'

char *s1 char *s2

'n' 'n' '\0''e''p'

'n' 'n' '\0''e''p'

Shallow Copy

Deep Copy

Recall from lecture 1:

How can we prevent memory safety issues…
● buffer overflow
● use-after-free
● double free

…while still giving the programmer control of heap
allocations?

Ownership!
Three golden rules:

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

10

Ownership!
Three golden rules:

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

11

int main() {

 if (a < b) {

 int x = 10;

 }

 // x not in scope here

}

struct String {

 int length;

 // needs free-ing

 char *data;

}

struct Connection {

 // needs

disconnecting

 int socket;

}

struct File {

 // needs closing

 int fd;

}

Why Ownership?

12

Ownership semantics make it trivial to know when
values can be dropped (i.e. freed):

● Since every value has one owner, we never
encounter a double-free bug

● Likewise, we can safely free any memory
associated with the value once it goes out of
scope, since we know it can’t be aliased

This means it is statically impossible to accidentally
create uninitialized memory in Rust (specifically “safe”
Rust — more on this later).

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value

will be dropped.

Examining Ownership with Strings
Numeric types are too simple. Next week we’ll
talk about defining custom data types, but for
now we’ll use std::String, Rust’s built-in
String type

13

Stack Heap

<un-init>

<un-init>

'p'

'n'

'n'

<un-init>

'e'

<un-init>

<un-init>

...

length: 4

fn main() {

 let s = String::from("penn");

}

capacity: 4

data:

s: String

Examining Ownership with Strings
fn main() {

 let s1 = String::from("penn");

 let s2 = s1;

 drop(s1);

 drop(s2);

}

14

error[E0382]: use of moved value: `s1`
--> lifetimes.rs:4:10
 |
2 | let s1 = String::from("penn");
 | -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 | let s2 = s1;
 | -- value moved here
4 | drop(s1);
 | ^^ value used here after move

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope,

the value will be dropped.
generic function to
trigger destructor

No double free !

What’s in a move?
fn main() {

 let s1 = String::from("penn");

 let s2 = s1;

 drop(s1);

 drop(s2);

}

1515

Stack Heap

<un-init>

<un-init>

'p'

'n'

'n'

<un-init>

'e'

<un-init>

<un-init>

...

length: 4

capacity: 4

data:

s1: String

What’s in a move?
fn main() {

 let s1 = String::from("penn");

 let s2 = s1;

 drop(s1);

 drop(s2);

}

1616

Stack Heap

<un-init>

<un-init>

'p'

'n'

'n'

<un-init>

'e'

<un-init>

<un-init>

...

length: 4

capacity: 4

data:

s1: String

length: 4

capacity: 4

data:

s2: String

invalidated

Move ≈ shallow copy + invalidate old owner

Moves are fast! (O(1))

What’s in a move?
fn main() {

 let s1 = String::from("penn");

 let s2 = s1;

 drop(s1);

 drop(s2);

}

1717

error[E0382]: use of moved value: `s1`
--> lifetimes.rs:4:10
 |
2 | let s1 = String::from("penn");
 | -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 | let s2 = s1;
 | -- value moved here
4 | drop(s1);
 | ̂ ^ value used here after move

What’s in a move?
fn main() {

 let s1 = String::from("penn");

 let s2 = s1;

 drop(s1);

 drop(s2);

}

1818

error[E0382]: use of moved value: `s1`
--> lifetimes.rs:4:10
 |
2 | let s1 = String::from("penn");
 | -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 | let s2 = s1;
 | -- value moved here
4 | drop(s1);
 | ̂ ^ value used here after move
 |
help: consider cloning the value if the performance cost is acceptable
 |
3 | let s2 = s1.clone();
 | ++++++++

What’s in a move?
fn main() {

 let s1 = String::from("penn");

 let s2 = s1.clone();

 drop(s1);

 drop(s2);

}

1919

clone:
● Deep copy
● Available on most built-in types
● Automatically derive for your own types
● When is a type not cloneable?

What’s in a move?
fn main() {

 let s1 = String::from("penn");

 let s2 = s1.clone();

 drop(s1);

 drop(s2);

}

2020

clone:
● Deep copy
● Available on most built-in types
● Automatically derive for your own types
● When is a type not cloneable?

fn main() {

 let s1: u32 = 1337;

 let s2 = s1;

 drop(s1);

 drop(s2);

}

Why no error??
Copy:
● Types with trivial clone functions can be

marked copy
● In that case move==clone and you don’t have

to worry about ownership
● These types often also have trivial destructor

functions

What types are Copy?

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
21

● All numeric types (integers and floats)
● bool
● char
● Tuples if their members are Copy (e.g. (i32, f64))

Ways to transfer ownership
1. Assignment (see previous example)
2. Function calls

22

error[E0382]: use of moved value: `s1`
--> lifetimes.rs:4:10
 |
2 | let s1 = String::from("penn");
 | -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 | print_str(s1);
 | -- value moved here
4 | drop(s1);
 | ^^ value used here after move

fn main() {

 let s1 = String::from("penn");

 print_str(s1);

 drop(s1);

}

fn print_str(s: String) {

 println!("{}", s);

}

Ways to transfer ownership
1. Assignment (see previous example)
2. Function calls

23

error[E0382]: use of moved value: `s1`
--> lifetimes.rs:4:10
 |
2 | let s1 = String::from("penn");
 | -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 | print_str(s1);
 | -- value moved here
4 | drop(s1);
 | ^^ value used here after move

fn main() {

 let s1 = String::from("penn");

 print_str(s1);

 drop(s1);

}

fn print_str(s: String) {

 println!("{}", s);

}

Hang on… why do you need
ownership to print?

Borrowing
Need access to a value without owning it?

● Try borrowing

24

fn main() {

 let s1 = String::from("penn");

 print_str(&s1);

 drop(s1);

}

fn print_str(s: &String) {

 println!("{}", s);

}

✅

● Defaults to immutable, can also borrow
mutably

fn clear_str(s: &mut String) {

 s.clear();

}

What about return values?
Return values can transfer ownership too

25

fn add_ferris(s: String) -> String {

 s + "🦀"

}

fn add_ferris1(s: &String) -> String {

 s.clone() + "🦀"

}

fn add_ferris2(s: &mut String) {

 s.push_str("🦀")

}

ownership
in

ownership
out

fn main(){

 let s = String::from("I love Rust");

 let with_ferris = add_ferris(s);

}

Other ways to write this function
● Pros and Cons?

Borrowing and Memory Safety
What if we borrow a value and then free it?

● This is impossible, since only the owner can
free a value

What if the owner frees a value while we are
borrowing it?

● Rust solves this problem by using something
called the borrow checker (static analysis)

● This happens automatically at compile-time
● Don’t worry about this for now, it will be

covered later
○ If you see an error like “borrowed value does not

live long enough”, that’s the borrow checker
saving you from a (potential) memory bug

26

fn assign_y(y: &mut &i32) {
 let val = 20;
 *y = &val;
}

fn main() {
 let mut y = &10;
 assign_y(&mut y);
 println!("{}", y);
}

View Types

27

&str and &[T]

A Motivating Example
/// Returns last 4 chars of course name

/// e.g. cis1905 -> 1905

fn course_code(course: &String) -> &str {

 ...

}

How would you implement this function based
on the signature?

● Talk with your neighbor

28

One solution: create a new string and copy
bytes from the course string to it

● Inefficient—the bytes already exist in
memory so why copy?

A Motivating Example
/// Returns last 4 chars of course name

/// e.g. cis1905 -> 1905

fn course_code(course: &String) -> &str {

 course[3..7]

}

fn main() {

 let s = String::new("cis1905");

 let number = course_code(&s);

}

29

s: String

Stack Heap

<un-init>

'c'

'i'

'1'

'9'

'0'

's'

'5'

<un-init>

...

length: 7

capacity: 7

data:

number: &str

length: 4

start:

“Fat pointer”:
● A pointer along with some data (length)
● Never see just str, always &str or

&mut str
● Function arg should always be &str,

never &String. Why?

Another Fat Pointer: &[T] (“Slice”)
Like &str, but for collections of any type —
stores both a pointer and a length

30

fn main() {

 let nums = [10, 20, 30, 40, 50];

 let first_3 = first_3(&nums);

}

fn first_3(arr: &[u32; 5]) -> &[u32] {

 &arr[0..3]

}

nums: [u32; 5]

Stack

first_3: &[u32]

length: 3

start:

0: 10

1: 20

2: 30

3: 40

4: 50

&str is almost the same as &[char], but uses UTF-8 encoding

Thinking of &str as a shorthand for &[char] can be useful

When to use String vs. &str
Both allow us to work with strings, but with a few key differences:

31

Type String &str

Ownership Owned Borrowed

Resizable? Yes No

Copies Deep Shallow*

A good rule of thumb is that if you need to edit the string, use, String otherwise just use &str.

Rust’s 2 different string types indicate a broader theme — memory layout is expressed at the type
level. This is different from C, where char* could mean a lot of different things.

Controlling mutability

32

An example
fn str_append(

 base: &mut String,

 new: &str) {

 base.push_str(new);

}

33

fn main() {

 let mut s = String::from("foo");

 str_append(&mut s, &s);

}

Stack Heap

'f'

'o'

'o'

<un-init>

<un-init>

<un-init>

<un-init>

<un-init>

<un-init>

...

length: 3

capacity: 3

data:

s: String

base:&mut String

new: &str

<un-init>

<un-init>

allocation
isn’t big
enough

s: String

Stack Heap

'f'

'o'

'o'

<un-init>

<un-init>

<un-init>

<un-init>

<un-init>

<un-init>

...

length: 3

capacity: 3

data:

base:&mut String

new: &str

An example
fn str_append(

 base: &mut String,

 new: &str) {

 base.push_str(new);

}

34

fn main() {

 let mut s = String::from("foo");

 str_append(&mut s, &s);

}

Growing a string:
1. Allocate new memory
2. Copy old data to new allocation
3. Free old allocation

<un-init>

<un-init>

s: String

An example
fn str_append(

 base: &mut String,

 new: &str) {

 base.push_str(new);

}

35

fn main() {

 let mut s = String::from("foo");

 str_append(&mut s, &s);

}

Growing a string:
1. Allocate new memory
2. Copy old data to new allocation
3. Free old allocation

Stack Heap

'f'

'o'

'o'

<un-init>

'\0'

'\0'

<un-init>

'\0'

'\0'

...

length: 3

capacity: 3

data:

base:&mut String

new: &str

'\0'

'\0'

An example
fn str_append(

 base: &mut String,

 new: &str) {

 base.push_str(new);

}

36

fn main() {

 let mut s = String::from("foo");

 str_append(&mut s, &s);

}

Growing a string:
1. Allocate new memory
2. Copy old data to new allocation
3. Free old allocation

Stack Heap

'f'

'o'

'o'

<un-init>

'f'

'o'

<un-init>

'o'

'\0'

...

s: String

base:&mut String

new: &str

'\0'

'\0'

length: 3

capacity: 6

data:

s: String

An example
fn str_append(

 base: &mut String,

 new: &str) {

 base.push_str(new);

}

37

fn main() {

 let mut s = String::from("foo");

 str_append(&mut s, &s);

}

Growing a string:
1. Allocate new memory
2. Copy old data to new allocation
3. Free old allocation

Stack Heap

<un-init>

<un-init>

<un-init>

<un-init>

'f'

'o'

<un-init>

'o'

'\0'

...

length: 3

capacity: 6

data:

base:&mut String

new: &str

'\0'

'\0'See the problem?

s: String

An example
fn str_append(

 base: &mut String,

 new: &str) {

 base.push_str(suffix);

}

38

fn main() {

 let s = String::from("foo");

 str_append(s, s);

}

Growing a string:
1. Allocate new memory
2. Copy old data to new allocation
3. Free old allocation

Stack Heap

<un-init>

<un-init>

<un-init>

<un-init>

'f'

'o'

<un-init>

'o'

'\0'

...

length: 3

capacity: 6

data:

base:&mut String

new: &str

'\0'

'\0'See the problem?

The Rule of References:
● At any given time, you can have either one mutable reference or any

number of immutable references.
● References must always be valid.

An example
fn str_append(

 base: &mut String,

 new: &str) {

 base.push_str(new);

}

39

fn main() {

 let mut s = String::from("foo");

 str_append(&mut s, &s);

}

error[E0502]: cannot borrow `s` as immutable because it is also borrowed as mutable
--> lifetimes.rs:9:24
 |
9 | str_append(&mut s, &s);
 | ---------- ------ ^^ immutable borrow occurs here
 | | |
 | | mutable borrow occurs here
 | mutable borrow later used by call

Quiz
let mut s = String::from("hello");

let r1 = &s;

let r2 = &s;

println!("{} and {}", r1, r2);

let r3 = &mut s;

println!("{}", r3);

Does it compile? Talk to your neighbor

40

Quiz
let mut s = String::from("hello");

let r1 = &s;

let r2 = &s;

println!("{} and {}", r1, r2);

let r3 = &mut s;

println!("{}", r3);

Does it compile? Talk to your neighbor

41

Yes! Compiler is smart enough to know when
you’re done using a reference

Quiz
let mut s = String::from("hello");

let r1 = &s;

let r2 = &s;

println!("{} and {}", r1, r2);

let r3 = &mut s;

println!("{}", r3);

Does it compile? Talk to your neighbor

42

Yes! Compiler is smart enough to know when
you’re done using a reference (“lifetimes”)

● At any given time, you can have either one

mutable reference or any number of

immutable references.

● References must always be valid.

Recap
Ownership:

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value

will be dropped.

Transfer ownership with move (like a shallow copy)

● When assigning

● When calling/returning from functions

Opt out of moving by cloneing (performance hit)

References:

To avoid transferring ownership, borrow an owned
value to get a reference

● Nothing happens when reference goes out of
scope

References can be immutable or mutable

● At any given time, you can have either one
mutable reference or any number of
immutable references.

References must always be valid.

43

