Lecture 2

Ownership

“Participation”

“Participation” # “Mandatory Attendance”

Please do come to class if you can! We try to
make it valuable.

If not, you can also participate on EdStem by
asking guestions as you go through the
readings/slides

https:/www.cis.upenn.edu/~cis1905/2024fall/syllabus/

Grading

The grading breakdown is as follows:

Post-lecture quizzes: 10%
Participation: 10%
Projects: 40%

Final Project: 40%

Clarifications After Lecture 1

e Statements/expressions/semicolons/return

e Declarative vs. imperative

o read as functional vs. object-oriented
e Stack/heap/memory/pointers

o Covered today!

e Statements are instructions that perform some action and do not return a value. T— let
e Expressions evaluate to a resultant value. Let's look at some examples. \

—_ everything
else

In Rust, the return value of the function is synonymous with the value of the final expression
in the block of the body of a function. You can return early from a function by using the return
keyword and specifying a value, but most functions return the last expression implicitly.

https://doc.rust-lang.org/book/ch03-03-how-functions-work.html

Today: Ownership!

But first: the stack and heap

Where can data be allocated?

Example?

How long
does it live?

Pros/Cons?

Static memory

Stack

Heap

static float PI = 3.14;

void foo () {
Point p = {.x=1,.y=2};

OR
char *s = "cis1905";
Entire program
lifetime
Zero cost
Fixed-size

Until end of function

char *init username () {

char *s;

malloc (&s, username length);

}

void drop username (char *s) {

free(s);

Low performance cost
Can’t outlive function

Until explicitly
deallocated with free

Supports allocations of
unknown size
Error-prone

Heap Programming Challenges

int main () { Stack Heap
char *sl; char *s1 . <un-init> .
malloc (&sl, 5); : 5
i char *s2 . : <un-init> :
*sl = {'p','e','n'",'n","\0"}; : , A
"""""""""""" ! 'p! i
char *s2 = sl;
! Te! |
free(sl); :k___________________i
printf ("$s\n", s2); ‘o' |
'n' i

'\O'

Heap Programming Challenges

int main () { Stack Heap
char *sl; char *s1 . <un-init> i
malloc (&sl, 5); - 5 roo- ;;;—-i-;-i-t-;-—----;
1 * 1 : - :
*sl = {'p','e','n'",'n","\0"}; i char *s2 . R

char *s2 = sl;

free(sl);

printf ("$s\n",

Heap Programming Challenges

int main () { Stack Heap
char *sl; char *s1 . <un-init> .
malloc (&sl, 5); - 5 roo- ;;;—-i-;-i-t-;-—----;
1 * 1 : - :
*sl = {'p','e','n'",'n","\0"}; i char *s2 . R

char *s2 = sl; Fommmmmmmmmmmmmmmm oo

<un-init> |
free(sl); BOO R
printf ("$s\n", s b <un-init> i
£ (<un-init> i
ree |

S OOA,

what went wrong here?

Shallow Copy

1. Shallow copies vs. deep copies
2. Who s in charge of freeing data?

Recall from lecture 1:

How can we prevent memory safety issues...

e Dbuffer overflow

e use-after-free Deep Copy

e double free e
..while still giving the programmer control of heap !
allocations?

Ownership!

Three golden rules:

1. Each value in Rust has an owner.
2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

10

Ownership!

Three golden rules:

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

— [

int main() {
if (a < b) { struct String {
int x = 10; int length;
} // needs free-ing

* .
// x not in scope here char *data;

struct Connection {
// needs
disconnecting

int socket;

struct File {
// needs closing

int fd;

11

Why Ownership?

Ownership semantics make it trivial to know when
values can be dropped (i.e. freed):

e Since every value has one owner, we never
encounter a double-free bug

e Likewise, we can safely free any memory
associated with the value once it goes out of
scope, since we know it can’t be aliased

This means it is statically impossible to accidentally
create uninitialized memory in Rust (specifically “safe”
Rust — more on this later).

Each value in Rust has an owner.
There can only be one owner at a time.
When the owner goes out of scope, the value

will be dropped.

12

Examining Ownership with Strings

Numeric types are too simple. Next week we’ll Stack Heap
talk about defining custom data types, but for
now we'll use std: :String, Rust’s built-in
String type

s: String i i <un-init> |

fn main () {

let s = String::from("penn");

Examining Ownership with Strings

1. Each value in Rust has an owner.

fn main () {
. " " e
let sl = String::from("penn"); @re can only be one owner at a time. |

drop(sl); +—— | generic function to
trigger destructor the value will be dropped.

3. When the owner goes out of scope,

drop (s2);

No double free!

error[E0382]: use of moved value: “sl°
--> lifetimes.rs:4:10

let sl = String::from("penn");
-- move occurs because “sl° has type "String , which does not implement the “Copy trait

I
I
3 let s2 = sl1;
| - valure
I drop(sl);

| A~ value used here after move

14

What’s in a move?

fn main () { Stack Heap
let sl = String::from("penn"); i i
drop (sl); |

drop (s2);

—

What’s in a move?

fn main () {

Heap

let sl

String::from("penn") ;
<un-init>

let s2 sl;

drop (sl);

drop (s2);

) invalidated o
------“-fé7 __________
Move = shallow copy + invalidate old owner ~ ——s /00 _I_l_ __________
Moves are fast! (O(1)) e Ij ___________
<un-init>

What’s in a move?

fn main () {
let sl = String::from("penn");
let s2 = s1;
drop (sl);
drop (s2);
}
error[E0382]: use of moved value: “sl°

-=> lifetimes.rs:4:10

let sl = String::from("penn");

- move occurs because “sl° has type "String’, which does not implement the "Copy trait

let s2 = s1;

-- value moved here

drop (sl);

A~ value used here after move

17

What’s in a move?

fn main () {
let sl = String::from("penn");
let s2 = s1;
drop (sl);
drop (s2);

}

error[E0382]: use of moved value: “sl°
--> lifetimes.rs:4:10
|

2 let sl = String::from("penn");
-- move occurs because “sl1° has type "String’, which does not implement the "Copy trait
3 let s2 = sl;
-- value moved here
4 drop (sl);

A~ value used here after move

I
I
I
I
I
I
I
1
I
I
I

help: consider cloning the value if the performance cost is acceptable
3 let s2 = sl.clone();
++++++++

18

What’s in a move?

fn main () {
let sl = String::from("penn");
let s2 = sl.clone();
drop (sl);
drop (s2);

}

clone:

e Deep copy
e Available on most built-in types
e Automatically derive for your own types
e When is a type not cloneable?

19

What’s in a move?

fn main () { fn main () {
let sl = String::from("penn"); let sl: u32 = 1337;
let s2 = sl.clone(); let s2 = s1;
drop (sl) ; drop (sl);
drop (s2); drop (s2);

Why no error??

clone: Copy:
e Deep copy e Types with trivial clone functions can be
e Available on most built-in types marked copy
e Automatically derive for your own types e In that case move==clone and you don’t have
e When is a type not cloneable? to worry about ownership
e These types often also have trivial destructor
functions

20

What types are Copy?

All numeric types (integers and floats)

bool

char

Tuples if their members are Copy (e.g. (132, f64))

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

21

Ways to transfer ownership

1. Assignment (see previous example) fn main() {
2. Function calls let sl = String::from("penn");
print str(sl);
drop(sl);
}
fn print str(s: String) {
printlin!("{}", s);

error[E0382]: use of moved value: “sl°
--> lifetimes.rs:4:10

2 | let sl = String::from("penn");

| -- move occurs because ‘sl has type "String’, which does not implement the “Copy trait
3 | print str(sl);

| -- value moved here
4 | drop (sl);

I

A~ value used here after move

22

Hang on... why do you need
ownership to print?

Borrowing

Need access to a value without owning it? fn main() {
let sl = String::from("penn");
e Try borrowing print str(&sl);
e Defaults to immutable, can also borrow drop(sl);
mutably J
fn print str(s: &String) {
printIn! ("{}", s);

}

fn clear str(s: &mut String) {

s.clear();

what about return values?

Return values can transfer ownership too

fn main () {
let s = String::from("I love Rust");

let with ferris = add ferris(s);

ownership ownership
in out

\)

fn add ferris(s: String) -> String {
s + u,ﬁu

Other ways to write this function
e Pros and Cons?

fn add ferrisl(s: &String) -> String ({
s.clone () + "&&"

}

fn add ferris2(s: &mut String) {
s.push_str ("&")

25

Borrowing and Memory Safety

What if we borrow a value and then free it?

e Thisis impossible, since only the owner can
free a value

What if the owner frees a value while we are
borrowing it?

e Rust solves this problem by using something
called the borrow checker (static analysis)

e This happens automatically at compile-time

e Don’'t worry about this for now, it will be

covered later
o If you see an error like “borrowed value does not
live long enough”, that’s the borrow checker
saving you from a (potential) memory bug

fn assign_y(y: &mut &i32) {
let val = 20;
*y = &val;

fn main() {
let mut y = &10;
assign_y(&mut y);
printIn!("{}", y);

26

View Types

&str and &[T]

27

A Motivating Example

/// Returns last 4 chars of course name
/// e.g. cisl1905 -> 1905

fn course code(course: &String) -> &str {

How would you implement this function based
on the signature?

e Talk with your neighbor

One solution: create a new string and copy
bytes from the course string to it

e |nefficient—the bytes already exist in
memory so why copy?

28

A Motivating Example

/// Returns last 4 chars of course name Stack Heap
/// e.g. cisl1905 -> 1905

fn course code(course: &String) -> &str {

1
<un-init> |
1
1

course[3..7]

fn main() {

1
1
let s = String::new("cisl1905"); i
1

let number = course code (&s);
: number: &str
“Fat pointer™ | lengeh: 4
e A pointer along with some data (length) |
e Never seejust str, always &str or | [start: '
&mut str REITUTIIT RTINS
e Function arg should always be &str,
never &String. Why?

Another Fat Pointer: &[T] (“Slice™)

Like &str, but for collections of any type —
stores both a pointer and a length

fn main() {
let nums = [10, 20, 30, 40, 50];
let first 3 = first 3 (&nums);

}

fn first 3(arr: &[u32; 5]) -> &[u32] {
garr[0..3]

&str is almost the same as &[char], but uses UTF-8 encoding

Thinking of &str as a shorthand for &[char] can be useful

Stack

i 0: 10 =
1 1
: ;
! 1: 20 !
5 2: 30
T :
! 3: 40 !
N S ;

30

When to use String vs. &str

Both allow us to work with strings, but with a few key differences:

Type String &str
Ownership Owned Borrowed
Resizable? Yes No
Copies Deep Shallow*

A good rule of thumb is that if you need to edit the string, use, String otherwise just use &str.

Rust’s 2 different string types indicate a broader theme — memory layout is expressed at the type
level. This is different from C, where char* could mean a lot of different things.

Controlling mutability

An example

fn str append(
base: &mut String,
new: é&str) {

base.push str (new);

fn main() {

let mut s = String::from("foo");

str append(&mut s, &s);

ctnck allocation
tac isn't big
String enough

33

An example

fn str append(
base: &mut String,
new: é&str) {

base.push str (new);

fn main() {

let mut s = String::from("foo");

str append(&mut s, &s);

Growing a string:

1. Allocate new memory

2. Copy old data to new allocation
3. Free old allocation

34

An example

fn str append(
base: &mut String,
new: é&str) {

base.push str (new);

fn main() {

let mut s = String::from("foo");

str append(&mut s, &s);

Growing a string:

1. Allocate new memory

2. Copy old data to new allocation
3. Free old allocation

35

An example

fn str append(
base: &mut String,
new: é&str) {

base.push str (new);

fn main() {

let mut s = String::from("foo");

str append(&mut s, &s);

Growing a string:

1. Allocate new memory

2. Copy old data to new allocation
3. Free old allocation

36

An example

Heap

<un-init> |
1
fn str append(C e

base: &mut String,

new: &str) {

base.push str (new);

fn main() {

let mut s = String::from("foo");

str append(&mut s, &s);

} 'o! i
Growing a string: O
1. Allocate new memory o
2. Copy old data to new allocation "\O |

3. Free old allocation See the problem?

The Rule of References:
e At any given time, you can have either one mutable reference or any
number of immutable references.
e References must always be valid.

An example

fn str append(
base: &mut String,
new: &str) {

base.push str (new);

fn main() {
let mut s = String::from("foo");

str append(&mut s, &s);

error[E0502]: cannot borrow ‘s as immutable because it is also borrowed as mutable
--> lifetimes.rs:9:24

str append(&mut s, &s);

———————————————— A~ immutable borrow occurs here

| mutable borrow occurs here
mutable borrow later used by call

39

Quiz

let mut s = String::from("hello™);

let rl &s;
let r2 = &s;

println! ("{} and {}", rl, r2);

let r3 = s&mut s;
println! ("{}", r3);

Does it compile? Talk to your neighbor

40

Quiz

let mut s = String::from("hello™);

let rl &s;
let r2 = &s;

println! ("{} and {}", rl, r2);

let r3 = s&mut s;
println! ("{}", r3);

Does it compile? Talk to your neighbor

Yes! Compiler is smart enough to know when

you're done using a reference

41

Quiz

let mut s = String::from("hello™);

let rl = &s;
let r2 = &s;
println! ("{} and {}", rl, r2);

let r3 = s&mut s;

println! ("{}", r3);

Does it compile? Talk to your neighbor

Yes! Compiler is smart enough to know when
you're done using a reference (“lifetimes”)

e Atany given time, you can have either one
mutable reference or any number of
immutable references.

e References must always be valid.

42

Recap

Ownership:

1. Each value in Rust has an owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value

will be dropped.
Transfer ownership with move (like a shallow copy)
e When assigning

e When calling/returning from functions

Opt out of moving by cloneing (performance hit)

References:

To avoid transferring ownership, borrow an owned
value to get a reference

e Nothing happens when reference goes out of
scope

References can be immutable or mutable

e Atany given time, you can have either one
mutable reference or any number of
immutable references.

References must always be valid.

43

