CIS1905 “‘
@ Welcome!

Who are we?

Course Staff

Including Penn emails and ask me anything about...

Paul Biberstein Alexander Robertson

Instructor Instructor
paulbib xanrob
Distance running and baking Bitcoin and guitar

https://www.cis.upenn.edu/~cis1905/2025fall/#course-staff

what about you?

Name

Year

Why you're taking the course

If you were a sea creature, which sea
creature would you be?

Logistics

https://www.cis.upenn.edu/~cis1905/2025fall/

Resources

Syllabus

Course Tools

e EdStem discussion
e Assignment submission on Gradescope

Office Hours

Make sure to check EdStem for office hours announcements (including reschedules and cancellations).

e Paul: TBD
¢ Alexander: TBD

https://www.cis.upenn.edu/~cis1905/2024fall/

Assignments

3.5 coding assignments
Post lecture quizzes (% credit for completion, % for correctness)
Open ended final project (done in groups)

No exams

Final Project

[J
Native GUI applications
[J
e Chatapp
e Music player
e Code editor ¢
[J

Video game

Challenging projects from other domains:

Graphics: pathtracer, FEM simulation

Networks: TCP/UDP/IP stack,

PL: garbage collector, compiler

DBs: relational database

OS: filesystem, device driver

Distributed systems: load balancer, consensus algorithm

Open source contributions

Contribute a crate to the Rust ecosystem
Make Rust bindings to a C/C++ library

Make a fast scientfic computing library with...
o Python bindings
o or WebAssembly bindings
Rewrite a CLI application

Anything else!

e (just check first)

A Brief Rusty History

Early history (2009-2012): personal project by Mozilla employee Graydon Hoare.
Sponsored by Mozilla

Pre-release (2012-2015): larger open source community formed, underwent many
feature changes trying to find a niche

May 15 2015: Rust 1.0 release, commitment stability
Adoption (2015-2020): Firefox code migrated to Rust, adoption elsewhere in industry
Modern era (2020-present):

e Morzilla lay offs include core Rust contributors
e Rust Foundation started by AWS, Huawei, Google, Microsoft, and Mozilla

Who’s using Rust Now?

Developers: StackOverflow’s most loved language eight years running
CLI tools: grep -> ripgrep (~5x faster), make -> just
Full rewrites: Dropbox core syncing code fully rewritten in Rust

Partial migrations: Firefox (20% of core codebase), Android (20% as of 2022)

https://github.blog/developer-skills/programming-lang
uages-and-frameworks/why-rust-is-the-most-admired
-language-among-developers/

https://github.com/BurntSushi/ripgrep

https://dropbox.tech/infrastructure/rewriting-the-he
art-of-our—sync-engine

https://4e6.qgithub.io/firefox-lang-stats/

Rust is a Systems Programming Language

Better definition: applications that have strong

One definition: applications that require control
correctness and performance requirements.

of memory layout and access to machine
primitives

e OSKernels
e Databases
e Networking code

But also...

e Scientific computing
e Embedded systems
e \Web programming

why Rust?

We'll primarily be comparing to C/C++,
languages that give more control than nearly
anything else out there.

Unfortunately, with great power comes great
danger:

read past buffer
use-after-free
double free
memory leaks
race conditions

Key question: can you keep the control of
C/C++ while not having the dangers?

10

Course roadmap

How does Rust provide ____?

Memory safety (no segfaults)

Data-race freedom (if it
compiles, no race conditions)

New safe abstractions
(unsafe Rust)

<your interests here>

11

70% of vulnerabilities in Microsoft’s codebases are memory safety

Chrome, Firefox have similar numbers

The source? U.S. Homeland Security: The Urgent Need for Memory Safety in Software Products

e How can languages address memory safety?

https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products

Course roadmap

How does Rust provide ____?

Memory safety (no segfaults)

Data-race freedom (if it
compiles, no race conditions)

New safe abstractions
(unsafe Rust)

<your interests here>

13

Course roadmap

Parallel Programming is inevitable
multi-core is what separates CPUs T
from 2005 and today nd of the Line = 2X/20 years (3%/yr

Figure 6. Growth of computer performance using integer programs (SPECintCPU).

Amdahl's Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)
CISC 2X/2.5 years RISC 2X/1.5 years I
. (22%/year) (52%/year)
Unfortunately, parallel programming o000

is hard. Can it be easier?

10,000

1,000

100

10

Performance vs. VAX11-780

1980 1985 1990 1995 2000 2005 2010 2015

Course roadmap

How does Rust provide ____?

Memory safety (ownership)

Data-race freedom
(type-safe concurrency)

New safe abstractions
(unsafe Rust)

<your interests here>

15

Anatomy of a Rust Program

fn main () {

println! ("fib(6) = {}", f£ib(6));

fn fib(n: u6d) -> u6d {
match n {
O | 1 =>n,

=> fib(n - 1) + fib(n - 2)

16

Anatomy of a Rust Program

‘println!(...)"
println! ("fib(6) = {}", fib(6));

Like C-style printf formatting but...

e Type-inferred
e TJype-safe
e No run-time cost

Implemented via macros (we’ll see more later)

Anatomy of a Rust Program

fn fib(n:

u6cd)

-> u6d {

Function Declaration

e Argument types and return types must be

annotated

Numeric types

size

signedness
i8 u8
i16 |u16
i32 |u32
i64 |u64

f32

fo4

18

Anatomy of a Rust Program

match

0

n {
| 1 => n,

=> fib(n - 1)

+ fib(n - 2)

Pattern Matching

e \Very similar to OCaml
e Very flexible, we'll see more in future
lectures and homework

19

Anatomy of a Rust Program

fn main () {

println! ("fib(6) = {}", f£ib(6));

fn fib(n: u6d) -> u6d {
match n {
O | 1 =>n,

=> fib(n - 1) + fib(n - 2)

20

Anatomy of a Rust Program

fn main () {

println! ("fib(6) = {}", fib(6));

fn fib(n: u6d) -> u6d {
match n {
0O 1] 1 =>n,

=> fib(n - 1) + fib(n - 2)

Hang on, where are the semicolons?
What about return??

21

Anatomy of a Rust Program

fn main() |
printlin! ("fib(6) = {}", fib(6));
}
fn fib(n: u64d) -> u6d { fn fib imperative(n: u64) -> u64d {
match n { if n <=1 {
O 1| 1 =>n, return n;
_=> fib(n - 1) + fib(n - 2) } else {
} let mut result = fib(n - 1);
} result += fib(n - 2);

return result;

22

Anatomy of a Rust Program

fn main ()

{

println! ("fib(6) = {}", f£ib(6));

fn fib(n:
match

0

u6d) -> uocd { fn fib imperative(n: u64) -> u64d {
n { if n <=1 {
| 1 => n, return n;
_=> fib(n - 1) + fib(n - 2) } else {

let mut result = fib(n - 1);
result += fib(n - 2);

return result;

}

Rust borrows ideas from declarative and imperative programming.

Allows you to balance reasoning about code and performance
(In this case, the left is preferable)

23

Anatomy of a Rust Program

fn main () {

println! ("fib(6) = {}", fib(6));

fn fib imperative(n: u6d4) -> u64d {
if n <=1 {
return n;
} else {
let mut result = fib(n - 1);
result += fib(n - 2);

return result;

24

Anatomy of a Rust Program

fn main() |
printlin! ("fib(6) = {}", fib(6));
}
fn fib imperative(n: u6d4) -> u64d {
if n <=1 {
return n;
} else {
let mut result = fib(n - 1);

result += fib(n - 2);

return result;

/)
equivalent

-

fn fib imperative (n:

if n <=1 {

uod) -> uo6d {
n
} else {
let mut result = fib(n - 1);
result += fib(n - 2);

result

fn fib imperative(n: u64) -> u64d {
return 1if n <=1 {

n
} else {

let mut result = fib(n - 1);
result += fib(n - 2);
result

HE

25

Statements and expressions

Semicolon _I sequence statements Braces _| statements in expression context
fn baz () -> u32 { let x = foo();
100
} ﬁ
J:L let x = { println! ("Calling foo..."); foo() };
fn baz () -> u32 {

let a = qux();
let b = buzz();

a +b

Anatomy of a Rust Program

fn main () {

println! ("fib(6) = {}", fib(6));

fn fib imperative(n: u6d4) -> u64d {
if n <=1 {
return n;
} else {
let mut result = fib(n - 1);
result += fib(n - 2);

return result;

27

Anatomy of a Rust Program

let mut result = fib(n - 1);

Type inference

e local variables are statically typed, but
type inference allows omitting type
annotations

Could write

let mut result: u6d = fib(n - 1);

28

Anatomy of a Rust Program

let msE result = fib(n - 1);
result += fib(n - 2);

error[EB384]: cannot assign twice to immutable variable “result’
--> fib.rs:17:9

16 | let result = fib(n - 1);

I ______

| I

| first assignment to “result’

| help: consider making this binding mutable: “mut result"
17 | result += fib(n - 2);

|

ANAAAAAAAAAAAAAAAAAA capnnot assign twice to immutable variable
error: aborting due to 1 previous error

For more information about this error, try “rustc --explain E0384°.

mut keyword

e bindings are immutable by default

e Reverse of C/C++ const keyword
29

Anatomy of a Rust Program

fn main () {

println! ("fib(6) = {}", fib(6));

fn fib imperative(n: u6d4) -> u64d {
if n <=1 {
return n;
} else {
let mut result = fib(n - 1);
result += fib(n - 2);

return result;

30

Rapid fire time

Rapid fire time

fn main () {

let s

"foobar"; // string literals

let x

1.0 + 2.0 / 3.0 * 4.0; // arithmetic

let b

true || false; // bools

let s: bool =1 < 2; // explicit type annotations

let ¢ = '"®¥'; // unicode

let tup = ('&& ', "Ferris"); // tuples

while false {

println! ("Uh-oh");

} // looping

32

But how do I run it?

Other languages have many build/package systems to choose from

e C/C++:make, CMake, Bazel, Ninja
e Python: pip, poetry, setuptools
e Javascript: npm, yarn, webpack

In Rust, we'll just use cargo :)

cargo 1nit my-project

cd my-project

cargo add a-cool-dependency

cargo run

33

Philosophical Takeaways

Rust emphasizes ~safety~

e immutable by default

Rust emphasizes ~control~

e declarative code for pure functions,
imperative code for procedural algorithms

Rust emphasizes ~productivity~

type inference
helpful error messages

34

Quiz time

35

Does it compile? Should it?

fn main () {
X = 5y

printIn! ("{}", x + 1);

36

Does it compile? Should it?

fn main () {
let x = 5;
printlin! ("{}", x + 1);

37

Does it compile? Should it?

fn main () {
let mut x = 5;
printlin! ("{}", x + 1);

38

Does it compile? Should it?

fn main () {
let x = 5;
let x = 6;
printlin! ("{}", x + 1);

Does it compile? Should it?

fn main () {
let mut x = 5;
let x = 6,

printlin! ("{}", x + 1);

40

Does it compile? Should it?

fn main () {
let mut x = 5;
X = 0;

printlin! ("{}", x + 1);

41

Does it compile? Should it?

fn main () {
let mut x = 5;
x = "B ;
println! ("{}", x);

42

Does it compile? Should it?

fn main () {
X = 5y

printlIn! ("{}",

x + 1);

error[E0425]: cannot find value “x° in this scope
--> shadow.rs:2:5
I
2 | X = 95;
| A
|

help: you might have meant to introduce a new binding

2 | let x = 5;
I

+++

43

Does it compile? Should it?

fn main () {
let x = 5;
printIn! ("{}", x + 1);

v

44

Does it compile? Shou

fn main () {
let mut x = 5;
printIn! ("{}", x + 1);

d it?

warning: variable does not need to be mutable
--> shadow.rs:13:9

I
13 | let mut x = 5;

| A

I
| help: remove this “mut’
I

= note: “#[warn(unused_mut)] on by default

45

Does it compile? Should it?

fn main () { \
let x = 5;

let x = 6;
printIn! ("{}", x + 1);

Does it compile? Should it?

fn main () {
let mut x = 5;
let x = 6,

printIn! ("{}", x + 1);

v

47

Does it compile? Should it?

fn main () {
let mut x = 5;
X = 0;

printIn! ("{}", x + 1);

v

48

Does it compile? Should it?

{ error[E0308]: mismatched types

--> shadow.rs:37:9
let mut x = 5; |

x = "&88"; 36 | let mut x = 5;

. | - expected due to this value
println! ("(}", x); 371 x= BB

} | AAAAAAAA expected integer, found “&str°

fn main ()

Does it compile? Should it?

fn foo () -> u32 {
let x = 5;

X

v

50

Does it compile? Should it?

fn foo () -> u32 {
if true {
1
} else {

2
}

v

51

Does it compile? Should it?

fn foo () -> u32 {
if true {
1

} else {

l,ﬂ\l

error[E0308]: mismatched types

--> func.rs:20:9

|
16 | fn foo2() -> u32 {

| --- expected "u32" because of return type

20 | I%\l
| AAAM expected

help: you can cast a ‘char’

I
20 | "&' as u32
| ++++++

to

‘u32’

a

found ‘char’

‘u32’, since a ‘char’ always occupies 4 bytes

52

Does it compile? Should it?

fn foo() |
let x =
1
} else {
N
b
}

if true

error[E0308]: “if " and “else’ have incompatible types
func.rs:37:9

-->

34

35

36
37

38

let x = if true {

- expected because of this
} else {
e
AAAMA expected integer, found “char’

if® and “else’ have incompatible types

53

Does it compile? Should it?

fn foo(n: u32)
match n {

0 | 1

2 1 3 |

=>

-> u32 {

0,

4 | 5 =>

1

error[E0004]: non-exhaustive patterns: “6_u32..=u32::MAX not

covered
--> func.rs:25:11

I

| match n {

| A pattern "6_u32..=u32::MAX' not covered
I

25
= note: the matched value is of type "u32°
help: ensure that all possible cases are being handled by adding a
match arm with a wildcard pattern or an explicit pattern as shown
I
27 ~ 2
28 +
I

| 31 4] 5=>1,
6_u32..=u32::MAX => todo!()

54

Final notes

Make sure you're on EdStem and Gradescope

Bookmark course website

Project O released soon: exercises to get you more familiar with Rust
Complete post-lecture quiz

55

Slide Credits

Inspiration from:

https://www.cis.upenn.edu/~cis1905/2024spring/

https://github.com/trifectatechfoundation/teach-rs

https://www.cs.umd.edu/class/fall2021/cmsc3887/

56

https://www.cis.upenn.edu/~cis1905/2024spring/
https://github.com/trifectatechfoundation/teach-rs
https://www.cs.umd.edu/class/fall2021/cmsc388Z/

