
CIS1905
Welcome!

1



Who are we?

https://www.cis.upenn.edu/~cis1905/2025fall/#course-staff 2



What about you?

🫵
● Name
● Year
● Why you’re taking the course
● If you were a sea creature, which sea 

creature would you be?

3



Logistics

https://www.cis.upenn.edu/~cis1905/2025fall/

4

https://www.cis.upenn.edu/~cis1905/2024fall/


Assignments
3.5 coding assignments

Post lecture quizzes (⅗ credit for completion, ⅖ for correctness)

Open ended final project (done in groups)

No exams

5



Final Project
Native GUI applications

● Chat app
● Music player
● Code editor
● Video game

Open source contributions

● Contribute a crate to the Rust ecosystem
● Make Rust bindings to a C/C++ library
● Make a fast scientfic computing library with…

○ Python bindings
○ or WebAssembly bindings

● Rewrite a CLI application

Challenging projects from other domains:

● Graphics: pathtracer, FEM simulation
● Networks: TCP/UDP/IP stack, 
● PL: garbage collector, compiler
● DBs: relational database
● OS: filesystem, device driver
● Distributed systems: load balancer, consensus algorithm

Anything else!

● ( just check first)
6



A Brief Rusty History
Early history (2009-2012): personal project by Mozilla employee Graydon Hoare. 
Sponsored by Mozilla

Pre-release (2012-2015): larger open source community formed, underwent many 
feature changes trying to find a niche

May 15 2015: Rust 1.0 release, commitment stability

Adoption (2015-2020): Firefox code migrated to Rust, adoption elsewhere in industry

Modern era (2020-present):

● Mozilla lay offs include core Rust contributors
● Rust Foundation started by AWS, Huawei, Google, Microsoft, and Mozilla

7



Who’s using Rust Now?

https://4e6.github.io/firefox-lang-stats/

https://github.com/BurntSushi/ripgrep

https://dropbox.tech/infrastructure/rewriting-the-he
art-of-our-sync-engine

https://github.blog/developer-skills/programming-lang
uages-and-frameworks/why-rust-is-the-most-admired

-language-among-developers/

Developers: StackOverflow’s most loved language eight years running

CLI tools: grep -> ripgrep (~5x faster), make -> just

Full rewrites: Dropbox core syncing code fully rewritten in Rust

Partial migrations: Firefox (20% of core codebase), Android (20% as of 2022)

8



Rust is a Systems Programming Language
One definition: applications that require control 
of memory layout and access to machine 
primitives

Better definition: applications that have strong 
correctness and performance requirements.

● OS Kernels
● Databases
● Networking code

9

But also…

● Scientific computing
● Embedded systems
● Web programming



Why Rust?
We’ll primarily be comparing to C/C++, 
languages that give more control than nearly 
anything else out there.

Unfortunately, with great power comes great 
danger:

● read past buffer
● use-after-free
● double free
● memory leaks
● race conditions

Key question: can you keep the control of 
C/C++ while not having the dangers?

10



Course roadmap

Memory safety (no segfaults)

Data-race freedom (if it 
compiles, no race conditions)

New safe abstractions 
(unsafe Rust)

How does Rust provide ____?

<your interests here>
11



Course roadmap

Memory safety (ownership)

x% of bugs

Data-race freedom 
(type-safe concurrency)

New safe abstractions 
(unsafe Rust)

How does Rust provide ____?

<your interests here>
12

70% of vulnerabilities in Microsoft’s codebases are memory safety

Chrome, Firefox have similar numbers

The source? U.S. Homeland Security: The Urgent Need for Memory Safety in Software Products 

● How can languages address memory safety?

https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products



Course roadmap

Memory safety (no segfaults)

Data-race freedom (if it 
compiles, no race conditions)

New safe abstractions 
(unsafe Rust)

How does Rust provide ____?

<your interests here>
13



Course roadmap

Memory safety (ownership)

Data-race freedom 
(type-safe concurrency)

New safe abstractions 
(unsafe Rust)

How does Rust provide ____?

<your interests here>
14

Parallel Programming is inevitable
multi-core is what separates CPUs
from 2005 and today

Unfortunately, parallel programming
is hard. Can it be easier?



Course roadmap

Memory safety (ownership)

Data-race freedom 
(type-safe concurrency)

New safe abstractions 
(unsafe Rust)

How does Rust provide ____?

<your interests here>
15



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

16



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

`println!(...)`

Like C-style printf formatting but…

● Type-inferred
● Type-safe
● No run-time cost

Implemented via macros (we’ll see more later)

17



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

Function Declaration

● Argument types and return types must be 
annotated

Numeric types

signedness

size

i8 u8

i16 u16

i32 u32

i64 u64

f32

f64

18



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

Pattern Matching

● Very similar to OCaml
● Very flexible, we’ll see more in future 

lectures and homework

19



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

20



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

Hang on, where are the semicolons?
What about return??

21



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

22



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib(n: u64) -> u64 {

   match n {

       0 | 1 => n,

       _ => fib(n - 1) + fib(n - 2)

   }

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

Rust borrows ideas from declarative and imperative programming.
Allows you to balance reasoning about code and performance

(In this case, the left is preferable) 23



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

24



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       n

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       result

   }

}

fn fib_imperative(n: u64) -> u64 {

   return if n <= 1 {

       n

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       result

   };

}

equivalent

25



Rust borrows ideas from declarative and imperative programming.
Allows you to balance reasoning and performance

Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

Statements and expressions
Braces ➡ statements in expression contextSemicolon ➡ sequence statements

let x = foo();

let x = { println!("Calling foo..."); foo() };

fn baz() -> u32 {

   100

}

fn baz() -> u32 {

   let a = qux();

   let b = buzz();

   a + b

}

26



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

27



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

Type inference

● local variables are statically typed, but 
type inference allows omitting type 
annotations

Could write

let mut result: u64 = fib(n - 1);

28



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

error[E0384]: cannot assign twice to immutable variable `result`
 --> fib.rs:17:9
   |
16 |         let result = fib(n - 1);
   |             ------
   |             |
   |             first assignment to `result`
   |             help: consider making this binding mutable: `mut result`
17 |         result += fib(n - 2);
   |         ^^^^^^^^^^^^^^^^^^^^ cannot assign twice to immutable variable

error: aborting due to 1 previous error

For more information about this error, try `rustc --explain E0384`.

mut keyword

● bindings are immutable by default
● Reverse of C/C++ const keyword

29



Anatomy of a Rust Program
fn main() {

   println!("fib(6) = {}", fib(6));

}

fn fib_imperative(n: u64) -> u64 {

   if n <= 1 {

       return n;

   } else {

       let mut result = fib(n - 1);

       result += fib(n - 2);

       return result;

   }

}

30



Rapid fire time

31



Rapid fire time
fn main() {

   let s = "foobar"; // string literals

   let x = 1.0 + 2.0 / 3.0 * 4.0; // arithmetic

   let b = true || false; // bools

   let s: bool = 1 < 2; // explicit type annotations

   let c = '😻'; // unicode

   let tup = ('🦀', "Ferris"); // tuples

   while false {

        println!("Uh-oh");

   } // looping

} 32



But how do I run it?
Other languages have many build/package systems to choose from

● C/C++: make, CMake, Bazel, Ninja
● Python: pip, poetry, setuptools
● Javascript: npm, yarn, webpack

In Rust, we’ll just use cargo :)

cargo init my-project

cd my-project

cargo add a-cool-dependency

cargo run # or cargo run --release

33



Philosophical Takeaways
Rust emphasizes ~safety~

● immutable by default

Rust emphasizes ~control~

● declarative code for pure functions, 
imperative code for procedural algorithms

Rust emphasizes ~productivity~

● type inference
● helpful error messages

34



Quiz time

35



Does it compile? Should it?
fn main() {

   x = 5;

   println!("{}", x + 1);

}

36



Does it compile? Should it?
fn main() {

   let x = 5;

   println!("{}", x + 1);

}

37



Does it compile? Should it?
fn main() {

   let mut x = 5;

   println!("{}", x + 1);

}

38



Does it compile? Should it?
fn main() {

   let x = 5;

   let x = 6;

   println!("{}", x + 1);

}

39



Does it compile? Should it?
fn main() {

   let mut x = 5;

   let x = 6;

   println!("{}", x + 1);

}

40



Does it compile? Should it?
fn main() {

   let mut x = 5;

   x = 6;

   println!("{}", x + 1);

}

41



Does it compile? Should it?
fn main() {

   let mut x = 5;

   x = ”🦀🦀🦀”;

   println!("{}", x);

}

42



Does it compile? Should it?
fn main() {

   x = 5;

   println!("{}", x + 1);

}

error[E0425]: cannot find value `x` in this scope                                                                                                                                   
--> shadow.rs:2:5                                                                                                                                                                  
  |                                                                                                                                                                                 
2 |     x = 5;                                                                                                                                                                      
  |     ^                                                                                                                                                                           
  |                                                                                                                                                                                 
help: you might have meant to introduce a new binding                                                                                                                               
  |                                                                                                                                                                                 
2 |    let x = 5;                                                                                                                                                                  
  |     +++                                                                                                                                                                         

43



Does it compile? Should it?
fn main() {

   let x = 5;

   println!("{}", x + 1);

}

44

✅



Does it compile? Should it?
fn main() {

   let mut x = 5;

   println!("{}", x + 1);

}

warning: variable does not need to be mutable                                                                                                                                       
 --> shadow.rs:13:9                                                                                                                                                                
   |                                                                                                                                                                                
13 |     let mut x = 5;                                                                                                                                                             
   |         ----^                                                                                                                                                                  
   |         |                                                                                                                                                                      
   |         help: remove this `mut`                                                                                                                                                
   |                                                                                                                                                                                
  = note: `#[warn(unused_mut)]` on by default

45



Does it compile? Should it?
fn main() {

   let x = 5;

   let x = 6;

   println!("{}", x + 1);

}

46

✅



Does it compile? Should it?
fn main() {

   let mut x = 5;

   let x = 6;

   println!("{}", x + 1);

}

47

✅



Does it compile? Should it?
fn main() {

   let mut x = 5;

   x = 6;

   println!("{}", x + 1);

}

48

✅



Does it compile? Should it?
fn main() {

   let mut x = 5;

   x = ”🦀🦀🦀”;

   println!("{}", x);

}

error[E0308]: mismatched types                                                                                                                                                      
 --> shadow.rs:37:9                                                                                                                                                                
   |                                                                                                                                                                                
36 |     let mut x = 5;                                                                                                                                                             
   |                 - expected due to this value                                                                                                                                   
37 |     x = "🦀🦀🦀";                                                                                                                                                              
   |         ^^^^^^^^ expected integer, found `&str`

49



Does it compile? Should it?
fn foo() -> u32 {

   let x = 5;

   x

}

50

✅



Does it compile? Should it?
fn foo() -> u32 {

   if true {

       1

   } else {

       2

   }

}

51

✅



Does it compile? Should it?
fn foo() -> u32 {

   if true {

       1

   } else {

       '🦀'

   }

}

error[E0308]: mismatched types                                                                                                                                                                     
 --> func.rs:20:9                                                                                                                                                                                 
   |                                                                                                                                                                                               
16 | fn foo2() -> u32 {                                                                                                                                                                            
   |              --- expected `u32` because of return type                                                                                                                                        
...                                                                                                                                                                                                
20 |         '🦀'                                                                                                                                                                                  
   |         ^^^^ expected `u32`, found `char`                                                                                                                                                     
   |                                                                                                                                                                                               
help: you can cast a `char` to a `u32`, since a `char` always occupies 4 bytes                                                                                                                     
   |                                                                                                                                                                                               
20 |        '🦀' as u32                                                                                                                                                                           
   |              ++++++                                                                                                                                                                           
          

52



Does it compile? Should it?
fn foo() {

   let x = if true {

       1

   } else {

       '🦀'

   };

}

error[E0308]: `if` and `else` have incompatible types                                                                                                                               
 --> func.rs:37:9                                                                                                                                                                  
   |                                                                                                                                                                                
34 |       let x = if true {                                                                                                                                                        
   |  _____________-                                                                                                                                                                
35 | |         1                                                                                                                                                                    
   | |         - expected because of this                                                                                                                                           
36 | |     } else {                                                                                                                                                                 
37 | |         '🦀'                                                                                                                                                                 
   | |         ^^^^ expected integer, found `char`                                                                                                                                  
38 | |     };                                                                                                                                                                       
   | |_____- `if` and `else` have incompatible types                                                                                                                                

53



Does it compile? Should it?
fn foo(n: u32) -> u32 {

   match n {

       0 | 1 => 0,

       2 | 3 | 4 | 5 => 1

   }

}

54

error[E0004]: non-exhaustive patterns: `6_u32..=u32::MAX` not 
covered                                                                                                                              
 --> func.rs:25:11                                                                                                                                                                                
   |                                                                                                                                                                                               
25 |     match n {                                                                                                                                                                                 
   |           ^ pattern `6_u32..=u32::MAX` not covered                                                                                                                                            
   |                                                                                                                                                                                               
  = note: the matched value is of type `u32`                                                                                                                                                      
help: ensure that all possible cases are being handled by adding a 
match arm with a wildcard pattern or an explicit pattern as shown                                                               
   |                                                                                                                                                                                               
27 ~        2 | 3 | 4 | 5 => 1,                                                                                                                                                                   
28 +         6_u32..=u32::MAX => todo!()                                                                                                                                                           
   |



Final notes
● Make sure you’re on EdStem and Gradescope
● Bookmark course website
● Project 0 released soon: exercises to get you more familiar with Rust
● Complete post-lecture quiz

55



Slide Credits
Inspiration from:

https://www.cis.upenn.edu/~cis1905/2024spring/

https://github.com/trifectatechfoundation/teach-rs

https://www.cs.umd.edu/class/fall2021/cmsc388Z/

56

https://www.cis.upenn.edu/~cis1905/2024spring/
https://github.com/trifectatechfoundation/teach-rs
https://www.cs.umd.edu/class/fall2021/cmsc388Z/

