Lecture 11
Async/Await

Concurrency Models

OS Threads

This is the concurrency model we have been Pros:
using so far. We spawn in a std: :thread,

which under the hood is an OS-level operation. e Simple to use

For small tasks (such as downloading a single Cons:
file), spawning an entire thread seems overkill. Ty e Iy Rty S
performance cost

fn get_two_sites() {
// Spawn two threads to do work.
let thread_one thread: :spawn(|| download("https://www.foo.com")):
let thread_two thread: :spawn(|| download("https://www.bar.com"));

// Wait for both threads to complete.
thread_one.join() .expect("thread one panicked"):
thread_two.join() .expect("thread two panicked"):

Coroutines (a.k.a. “Green Threads™)

This is the concurrency model used by Pros:

languages like Java, Python, Go, and Lua.
e Cheaper to spawn than OS threads

Instead of using OS-level threads, the language e Simple and easy to use

runtime supports the creation of cheap “fake”

threads. The runtime then decides which

‘thread” to execute at any given time. e Requires a hefty language runtime, which

is unsuitable for a systems language
o Rust prefers “zero-cost abstractions”

Cons:

public class SingleThreadExample {
public static void main(String[] args) <
NewThread t = new NewThread() :
t.start();

Event-driven programming (callbacks)

This concurrency model is frequently seen in Pros:
JavaScript (although they also support
async/await syntax). e Very performant

It works by passing “callback functions” as Cons:

arguments. e Verbose, nonlinear control flow
e Hard to debug

function func() <
console.log("line 1");
setTimeout(() => {

console.log("line 2"):

}, 2000)
console.log("line 3");

b

func();

Async/await syntax

We introduce two new keywords:

e async
e .awailt

We use async to mark a function as
“asynchronous”, and we use .await to await
the execution of another async function (and do
other work in the meantime).

#[tokio: :main]
async fn main() -> Result<()> {

Pros:

e Writing asynchronous code “feels” like
writing synchronous code

Cons:

e Also requires a runtime (more later...)
e Leaky abstraction

let mut client = client::connect("127.0.0.1:6379") .await?;

client.set("hello", "world".into()).await?;
let result = client.get("hello").await?;
result={:?}", result);:

println! ("got value from the server;
Ok(())

Async/await

What does it mean for a function to be async?

Consider the following function:

async fn fetch(url: &str) -> Option<Response>:

What does it mean for a function to be async?

Consider the following function:

async fn fetch(url: &str) -> Option<Response>:

Suppose we call fetch:

let response = fetch("https://www.foo.com"):

What does it mean for a function to be async?

Consider the following function:

async fn fetch(url: &str) -> Option<Response>:

Suppose we call fetch:

let response = fetch("https://www.foo.com"):

What is the type of response?

let response: impl Future<Output = Option<Response>>

What does it mean for a function to be async?

Consider the following function: What is a Future?

async fn fetch(url: &str) -> Option<Response>: e It's like a “promise” of some future

value that does not yet exist.

Suppose we call fetch:

let response = fetch("https://www.foo.com"):

What is the type of response?

let response: impl Future<Output = Option<Response>>

What does it mean for a function to be async?

Consider the following function: What is a Future?
async fn fetch(url: &str) -> Option<Response>: e It's like a “promise” of some future

value that does not yet exist.

Suppose we call fetch:

How do we get the value of a Future?
let response = fetch("https://www.foo.com"):

e Weneedto .await it.

What is the type of response?

let response: impl Future<Output = Option<Response>>

Async/await syntax is a leaky abstraction

async fn app() {
let response = fetch("https://www.foo.com").await;

}

Async/await syntax is a leaky abstraction

async fn app() {
let response = fetch("https://www.foo.com").await;

}

In order to use .await...

Async/await syntax is a leaky abstraction

...we need to mark our function async

async fn app() {
let response = fetch("https://www.foo.com").await;

}

In order to use .await...

Implementation & Rationale

Why?

When we call . await, we don’t want to block Notice that Futureis a trait. That
the current thread. Therefore, we also need to means that each Future has its own
change the calling function to return a Future. state.

In reality, async functions are less like functions Each time we poll a future, it advances
and more like state machines built up by its state as much as possible (until the
composing together other async “state future is Ready).

machines” (i.e. functions).

pub trait Future { pub enum Poll<T> {
type Output; Ready (T),
Pending,
fn poll(...) -> Poll<Self: :Output>; }

So how do we actually call async code?

So the question remains, how do we call async functions? Eventually, we will need to call them
“synchronously” from our main function.

e Async functions actually return a Future<T>, when really we just care about the T
e We can’t getthe T by .awaiting it, because then we would need to make our function async

This is where executors come in.

At a high level, an executor intelligently calls poll on our Futures until they are Poll: :Ready. This is
the “runtime” component of async/await.

e Rust doesn’t actually provide any executor!
o Popular crates like tokio provide this (in fact, tokio is a de-facto standard)
e Inthis way, async/await syntax “is” a zero-cost abstraction (or at least low-cost)

How does the executor know when to poll futures?

This is managed by something called a Waker,
which provides a wake function that tells the
executor the future is ready to make progress }
(the details of this are not important).

async fn say_hello() {
println! ("Hello from say_hello"):

#[tokio: :main]
Importantly, futures will not make progress async fn main()
unless you .await them (“lazy” futures). This is say_hello(); _
in contrast to languages like JavaScript (which SRR AL QR el Rl U
has “eager” futures).

< rust-test cargo run
Finished "dev’ profile [unoptimized + debuginfo] target(s) in 0.01s
Running "target/debug/rust-test’

Hello from main

9 rust-testf]

Running Futures together

The nice thing about futures is that we can
compose them together to make new futures.

The join! macro lets us await on futures by
running them concurrently. It also implicitly calls
.await for you.

This is in contrast to awaiting the futures in
sequence, which would take 5 seconds instead
of 3 in this particular (contrived) instance.

- rust-test cargo run

use std::time: :Duration;
use tokio::join;

async fn say_hello_1() {
tokio: :time: :sleep(Duration::from_secs(2)).await;
println!("Hello from function 1");

async fn say_hello_2() {
tokio: :time: :sleep(Duration::from_secs(3)).await;
println!("Hello from function 2");

#[tokio: :main]
async fn main() {
join!(say_hello_1(), say_hello_2());

Compiling rust-test v0.1.0 (/home/alexander/rust-test)
Finished ‘dev' profile [unoptimized + debuginfo] target(s) in 0.55s
Running “target/debug/rust-test’

Hello from function 1
Hello from function 2
> rust-test]j

Other tokio features

Tokio has other ways of dealing with tasks and futures

e spawn lets you spawn “green threads”, although joining them requires the use of .await.
e try_join! lets you early return if an error is encountered from one of the Futures.
e select! returns the first branch that completes, rather than waiting for all of them.

Tokio also provides additional channels on top of std: :sync: :mpsc

tokio:
tokio:
tokio:
tokio:

:sync:
:sync:
:sync:
:sync:

:mpsc — same as standard library (multiple producer, single consumer)
:broadcast — multiple senders & receivers

:oneshot — used to send a single value from one sender to one receiver
:watch — a single sender send values to several receivers, only latest value kept

Considerations & Issues

“Colored” functions

Async/await is often considered a leaky abstraction. We can
call sync code from async code, but we cannot call async code
from sync code. Furthermore, it is bad practice to call blocking
sync code from async async, because then our executor gets
hung up, so we can’t do other work in the background.

There are three solutions to this dilemma:

1. Only use sync code (but then we don’t get async features)
2. Use only async code (but can’t call from a sync context)
3. Make two different versions of every function

This issue is illustrated to great effect in the popular article “What
Color is Your Function?” by Bob Nystrom.

What Color is Your Function?

I don’t know about you, but nothing gets me going in the morning quite like a
good old fashioned programming language rant. It stirs the blood to see
someone skewer one of those “blub” languages the plebians use, muddling
through their day with it between furtive visits to StackOverflow.

(Meanwhile, you and I, only use the most enlightened of languages. Chisel-sharp
tools designed for the manicured hands of expert craftspersons such as
ourselves.)

Of course, as the author of said screed, I run a risk. The language I mock could be
one you like! Without realizing it, I could have let the rabble into my blog,
pitchforks and torches at the ready, and my fool-hardy pamphlet could draw
their ire!

To protect myself from the heat of those flames, and to avoid offending your
possibly delicate sensibilities, instead, Ill rant about a language I just made up.
A strawman whose sole purpose is to be set aflame.

I know, this seems pointless right? Trust me, by the end, we’ll see whose face (or
faces!) have been painted on his straw noggin.

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

Two versions of the same code

Inevitably, we have landed on the third option, so we
end up with entire crates like async_std, which are
virtually identical to the standard library but every
function is “colored” with the async decorator.

Crate async_std E

1 Async version of the Rust standard library

Uiie
Ficie

CiSe
LS e

async_std::i0::Stdin;
std::io::Stdin;

async_std: :net: :TcpStream;
std: :net: :TcpStream;

source - [-]

async-std is a foundation of portable Rust software, a set of minimal and battle-tested shared abstractions for the broader Rust
ecosystem. It offers std types, like Future and Stream, library-defined operations on language primitives, standard macros, I/O

and multithreading, among many other things.

async-std is available from crates.io. Once included, async-std can be accessed in use statements through the path

async_std, asin use async_std::future.

Keyword generics

There have been efforts made to resolve this issue, such as the Keyword Generics Initiative, which
proposes the addition of 7async syntax to mark a function as “maybe async’.

The function can be used from both async and non-async contexts, where .await becomes a no-op. A
similar proposal is being made for a ?const keyword.

This could possibly solve the issue but there is also fear of increasing the complexity of the language. We
do not want to end up like C++, which has 97 different keywords and a conglomerate of features.

trait 2async Read {
?async fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
?async fn read_to_string(&mut self, buf: &mut String) -> Result<usize> { ... }

/// Read from a reader into a string.

?async fn read_to_string(reader: &mut impl ?async Read) -> std::io::Result<String> {
let mut string = String::new();
reader.read_to_string(&mut string).await?;
Ok(string)

https://blog.rust-lang.org/inside-rust/2023/02/23/keyword-generics-progress-report-feb-2023.html

Pinning

If we look at the “real” definition of the Future trait, we can see that the poll method doesn’t take as
argument &mut self, but rather Pin<&mut Self> (note the Context just references the Waker).

But what is P1n? Long story short, Pin<T> guarantees that T does not move in memory. This is stronger
than the guarantee that references make, because we prevent moving operations such as mem: : swap.

To do this, we define the convention that T is a pointer to some value (as opposed to the value itself), and
we prevent the user from directly manipulating that pointer.

pub trait Future {
type Output;

// Required method
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

Why do we need Pin?

In general, we cannot allow Future state machines to be moved in memory. This is because async code
can contain references.

Consider the example below. We need the ability to store the stack variable rx in our state machine,
which points to data in x. If we “move” our state machine, then the rx pointer points to invalid memory.

Most Futures don'’t require this (namely ones that don’t reference themselves, hence “in general”), so
there is a trait called Unpin which lets us access the underlying T from a Pin<T>.

async fn lifetimes() -> 132 {
let x = b5;
let rx = &X;

tokio: :time: :sleep(Duration::from_secs(2)).await;

let y = *rx;
b

