
Lecture 11
Async/Await



Concurrency Models



OS Threads

This is the concurrency model we have been 
using so far. We spawn in a std::thread, 
which under the hood is an OS-level operation.

For small tasks (such as downloading a single 
file), spawning an entire thread seems overkill.

Pros:

● Simple to use

Cons:

● Each time we spawn a thread, there is a 
performance cost



Coroutines (a.k.a. “Green Threads”)

This is the concurrency model used by 
languages like Java, Python, Go, and Lua.

Instead of using OS-level threads, the language 
runtime supports the creation of cheap “fake” 
threads. The runtime then decides which 
“thread” to execute at any given time.

Pros:

● Cheaper to spawn than OS threads
● Simple and easy to use

Cons:

● Requires a hefty language runtime, which 
is unsuitable for a systems language

○ Rust prefers “zero-cost abstractions”



Event-driven programming (callbacks)

This concurrency model is frequently seen in 
JavaScript (although they also support 
async/await syntax).

It works by passing “callback functions” as 
arguments.

Pros:

● Very performant

Cons:

● Verbose, nonlinear control flow
● Hard to debug



Async/await syntax

We introduce two new keywords:

● async
● .await

We use async to mark a function as 
“asynchronous”, and we use .await to await 
the execution of another async function (and do 
other work in the meantime).

Pros:

● Writing asynchronous code “feels” like 
writing synchronous code

Cons:

● Also requires a runtime (more later…)
● Leaky abstraction



Async/await



What does it mean for a function to be async?

Consider the following function:



What does it mean for a function to be async?

Consider the following function:

Suppose we call fetch:



What does it mean for a function to be async?

Consider the following function:

Suppose we call fetch:

What is the type of response?



What does it mean for a function to be async?

Consider the following function:

Suppose we call fetch:

What is the type of response?

What is a Future?

● It’s like a “promise” of some future 
value that does not yet exist.



What does it mean for a function to be async?

Consider the following function:

Suppose we call fetch:

What is the type of response?

What is a Future?

● It’s like a “promise” of some future 
value that does not yet exist.

How do we get the value of a Future?

● We need to .await it.



Async/await syntax is a leaky abstraction



Async/await syntax is a leaky abstraction

In order to use .await…



Async/await syntax is a leaky abstraction

In order to use .await…

…we need to mark our function async



Implementation & Rationale



Notice that Future is a trait. That 
means that each Future has its own 
state.

Each time we poll a future, it advances 
its state as much as possible (until the 
future is Ready).

Why?

When we call .await, we don’t want to block 
the current thread. Therefore, we also need to 
change the calling function to return a Future.

In reality, async functions are less like functions 
and more like state machines built up by 
composing together other async “state 
machines” (i.e. functions).



So how do we actually call async code?

So the question remains, how do we call async functions? Eventually, we will need to call them 
“synchronously” from our main function.

● Async functions actually return a Future<T>, when really we just care about the T
● We can’t get the T by .awaiting it, because then we would need to make our function async

This is where executors come in.

At a high level, an executor intelligently calls poll on our Futures until they are Poll::Ready. This is 
the “runtime” component of async/await.

● Rust doesn’t actually provide any executor!
○ Popular crates like tokio provide this (in fact, tokio is a de-facto standard)

● In this way, async/await syntax “is” a zero-cost abstraction (or at least low-cost)



How does the executor know when to poll futures?

This is managed by something called a Waker, 
which provides a wake function that tells the 
executor the future is ready to make progress 
(the details of this are not important).

Importantly, futures will not make progress 
unless you .await them (“lazy” futures). This is 
in contrast to languages like JavaScript (which 
has “eager” futures).



Running Futures together

The nice thing about futures is that we can 
compose them together to make new futures.

The join! macro lets us await on futures by 
running them concurrently. It also implicitly calls 
.await for you.

This is in contrast to awaiting the futures in 
sequence, which would take 5 seconds instead 
of 3 in this particular (contrived) instance.



Other tokio features

Tokio has other ways of dealing with tasks and futures

● spawn lets you spawn “green threads”, although joining them requires the use of .await.
● try_join! lets you early return if an error is encountered from one of the Futures.
● select! returns the first branch that completes, rather than waiting for all of them.

Tokio also provides additional channels on top of std::sync::mpsc

● tokio::sync::mpsc – same as standard library (multiple producer, single consumer)
● tokio::sync::broadcast – multiple senders & receivers
● tokio::sync::oneshot – used to send a single value from one sender to one receiver
● tokio::sync::watch – a single sender send values to several receivers, only latest value kept



Considerations & Issues



“Colored” functions

Async/await is often considered a leaky abstraction. We can 
call sync code from async code, but we cannot call async code 
from sync code. Furthermore, it is bad practice to call blocking 
sync code from async async, because then our executor gets 
hung up, so we can’t do other work in the background.

There are three solutions to this dilemma:

1. Only use sync code (but then we don’t get async features)
2. Use only async code (but can’t call from a sync context)
3. Make two different versions of every function

This issue is illustrated to great effect in the popular article “What 
Color is Your Function?” by Bob Nystrom.

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/


Two versions of the same code

Inevitably, we have landed on the third option, so we 
end up with entire crates like async_std, which are 
virtually identical to the standard library but every 
function is “colored” with the async decorator.



Keyword generics

There have been efforts made to resolve this issue, such as the Keyword Generics Initiative, which 
proposes the addition of ?async syntax to mark a function as “maybe async”.

The function can be used from both async and non-async contexts, where .await becomes a no-op. A 
similar proposal is being made for a ?const keyword.

This could possibly solve the issue but there is also fear of increasing the complexity of the language. We 
do not want to end up like C++, which has 97 different keywords and a conglomerate of features.

https://blog.rust-lang.org/inside-rust/2023/02/23/keyword-generics-progress-report-feb-2023.html


Pinning

If we look at the “real” definition of the Future trait, we can see that the poll method doesn’t take as 
argument &mut self, but rather Pin<&mut Self> (note the Context just references the Waker).

But what is Pin? Long story short, Pin<T> guarantees that T does not move in memory. This is stronger 
than the guarantee that references make, because we prevent moving operations such as mem::swap.

To do this, we define the convention that T is a pointer to some value (as opposed to the value itself), and 
we prevent the user from directly manipulating that pointer.



Why do we need Pin?

In general, we cannot allow Future state machines to be moved in memory. This is because async code 
can contain references.

Consider the example below. We need the ability to store the stack variable rx in our state machine, 
which points to data in x. If we “move” our state machine, then the rx pointer points to invalid memory.

Most Futures don’t require this (namely ones that don’t reference themselves, hence “in general”), so 
there is a trait called Unpin which lets us access the underlying T from a Pin<T>.


