Lecture /

Smart Pointers and Trait Objects

rom pLa: What Fn type should my function take?

more
accepting

A

FnOnce: implemented by all functions

FnMut: implemented by functions that
don’t move data out of their
environment

Fn: implemented by functions that
don’t mutate or move data from their
environment

FnOnce: can be called once

FnMut: can be called infinitely, as
long as you have a mutable
reference

Fn: can be called infinitely

Writing a function that takes another
function? Take the highest Fn... trait you
can that still suits your needs

more
useful

QUlZ from last time

struct Foo<'a> { Will this compile? No!
bar: &'a 132

fn baz<'a, 'b>(f: &'a Foo<'b>) -> &’'??? 132
(/% omitted */ } Two separate lifetimes in the input

e can'tinfer output lifetime without
ambiguity
fn baz<'a, 'b>(f: &'a &'b i32) -> &’??2? 132
{ /* omitted */}

Smart Pointers

Back to lists

struct List<T> { fn main () |
value: T, let mut listl = List::new(l);
next: Option<Box<List<T>>>, let mut list2 = List::new(2);

) let node = Box::new(List::new(3));

impl<T> List<T> {

listl.next
fn new(value: T) -> Self {

. list2.next
List { wvalue, next: None }

Some (node) ;

Some (node) ;

error[E0382]: use of moved value: "node’
-=-> list.rs:17:21

16 | listl.next = Some (node) ;
---- value moved here

I
17 | list2.next = Some (node) ;
I

AAAA yvvalue used here after move

Why as_mut()?

pub fn as mut<T>(&mut Option<T>) -> Option<&mut T>
pub fn as ref<T>(&Option<T>) -> Option<&T>

let mut x: Option<u32> = Some (5);

let as mut ref: &mut Option<u32> = &mut x;

as mut ref.unwrap() = 7; // bad!

t

*as mut ref.as mut ().unwrap() = 7; // good!

type: u32 (not assignable)

type: &mut u32 (assignable)

Recall: why ownership?

1. Each value in Rust has an owner.
2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

One owner -> statically determine when values
can be destructed (when their owner is no
longer accessible)

Is multiple ownership a sin?

Yes—why?

e How to tell when values should be
destructed?

track at run-time instead
of compile-time

No—why?

Sometimes real programs need shared
ownership

Multiple ownership via reference counting

Reasoning about shared ownership statically is impossible ->
record ownership data at runtime

e When a clone is made, increment refcount
e When an owner goes out of scope, decrement refcount
e When refcount is 0, deallocate

Rc: reference counted pointer

use std::rc::Rc; fn main () {
let mut listl = List::new(l);
struct List<T> { let mut list2 = List::new(2);
value: T, let node = Rc::new(List::new(3));

} listl.next

next: Option<Rc<List<T>>>,

Some (Rc::clone (&node)) ;

impl<T> List<T> { list2.next Some (Rc::clone (&node)) ;

fn new(value: T) -> Self { }

List { wvalue, next: None }

three owners of Node (3)

Rc allows shared ownership by figuring out
when to run destructor at run-time

10

How to implement Rc?

stack

Re<T>

heap

ref count: 1

ptr<T>

Node<T>

A or B?

stack

Re<T>

heap

ptr<T>

Rclnner

ref count: 1

Node<T>

11

How to implement Rc?

stack

Re<T>

heap

ref count: 1

ptr<T>

Node<T>

Re<T>

ref count: 1

ptr<T>

A or B?

stack

Re<T>

heap

ptr<T>

Rclnner

ref count: 2

Rc<T>

Node<T>

ptr<T>

12

Rc: reference counted pointer

use std::rc::Rc; fn main () |

let mut listl
struct List<T> { let mut list2

List::new(1l);

List::new(2);

value: T, let node = Rc::new(List::new(3));

next: Option<Rc<List<T>>>,

} listl.next

impl<T> List<T> { list2.next

fn new(value: T) -> Self { }
List { wvalue, next: None }

Some (Rc::clone (&node)) ;

Some (Rc::clone (&node)) ;

But, next isn’'t a field on Rc?
Types that are like pointers implement the Deref trait
so that they can be treated like the inner type

auto-deref:

&mut Rc<List<i32>>

U

&mut List<i32>

https.//doc.rust-lang.org/std/ops/trait. Deref. html

13

https://doc.rust-lang.org/std/ops/trait.Deref.html

Using Rc as Garbage Collection

Don’t want to think about ownership? Just wrap
everything in Rc

e Don't actually do this, but it works in
theory

14

RC summary

Some data structures require shared ownership

e Reuse data instead of cloning
e graphs, linked lists, DAGs

Reasoning about shared ownership statically is
impossible -> record ownership data at runtime

e When a clone is made, increment
refcount

e \When an owner goes out of scope,
decrement refcount

e When refcount is 0, deallocate

Rc is a primitive form of garbage collection

e.g. in Python, every value is reference
counted

15

Shared ownership woes

use std::rc::Rcy; fn main () {
let mut listl = List::new(l);
struct List<T> { let mut list2 = List::new(2);
value: T, let node = Rc::new(List::new(3));

next: Option<Rc<List<T>>>,

} listl.next = Some (Rc::clone (&node)) ;
impl<T> List<T> { list2 .next = Some (Rc::clone (&node)) ;
fn new (value: T) -> Self { node.value = 5;
List { wvalue, next: None } }
}
} error[E0594]: cannot assign to data in an "Rc’

--> refcell.rs:22:3

22 node.value = 5;

I
I AAAAAAAAAAAAANAN cannot assign
I

16

Shared ownership # shared mutability

Since Rced values can have multiple owners, How to mutate shared values without violating
never safe to give out mutable references to Rust’s safety guarantees? (no dangling references)
inner type T!

fn main() {

let mut vl: Rc<Vec<i32>> = Rc::new(vec![1]);

let mut v2: Rc<Vec<i3Z>> Rc::copy (&vl) ;
let vl mut: &mut Vec<i32> = &mut *vl;
let v2 mut: &mut Vec<i32> = &mut *v2);
let first: &mut 132 = &mut v2 mut[O0];

vl mut.pop();

println! ("{:?}", first); // dangling!
17

Shared ownership # shared mutability

Since Rced values can have multiple owners, How to mutate shared values without violating
never safe to give out mutable references to Rust’s safety guarantees? (no dangling references)
inner type T!

fn main() {

let mut vl: Rc<Vec<i32>> = Rc::new(vec![1]);

let mut v2: Rc<Vec<i3Z>> Rc::copy (&vl) ;

Rc: shared ownership -> dynamically track owners
?7?: shared mutation -> dynamically track mutators

vl mut.pop();

println! ("{:?}", first); // dangling!
18

List Attempt #3 °

use std::rc::Rc; fn main () |

let mut listl

List::new(1l);

struct List<T> { let mut list2 = List::new(2);
value: T, let node =
next: Option<Rc<RefCel I<List<T>>>>, Rc::new (RefCell ::new (List::new(3)));

}

impl<T> List<T> { listl.next = Some (Rc::clone (&node)) ;
fn new(value: T) -> Self { list2.next = Some (Rc::clone (&node)) ;

List { wvalue, next: None } node .borrow mut () .value = 5; .
} } RefCell: count mutable/ir%nmutable references at
run-time

e create new refs with borrow/borrow_mut
e panics if more than one mut OR mut and non-mut at
same time

List Attempt #3 °

use std::rc::Rc; fn main () |

let mut listl

List::new(1l);

struct List<T> { let mut list2 = List::new(2);
value: T, let node =
next: Option<Rc<RefCel I<List<T>>>>, Rc::new (RefCell::new(List::new(3)));
}
impl<T> List<T> { listl.next = Some (Rc::clone (&node)) ;
fn new (value: T) -> Self { list2.next = Some (Rc::clone (&node)) ;
List { value, next: None } let refl = node.borrow mut ();

RefCell: count mutable/immutable references at
run-time
e create new refs with borrow/borrow_mut
e panics if more than one mut OR mut and non-mut at
same time

compiles(4...

panics =

20

RefCell is not a reference/pointer!

use std::cell::RefCell;

fn main () {
let v = RefCell::new(l);
let rl = v.borrow();

let r2 = v.borrow();

stack

RefCell<i32>

heap

borrow
count: 2

i32

rl

r2

21

RefCell is not a reference/pointer!

use std::cell::RefCell;
fn main () {
let v = RefCell::new(l);

let rl = v.borrow mut ();

stack

RefCell<i32>

heap

borrow
count: -1

i32

rl

22

RefCell recapped

Sometimes the compiler can’t statically verify The Rule of References:

that you follow the reference rules e At any given time, you can have either one
mutable reference or any number of
immutable references.

e References must always be valid.

e Offload reference checking to run-time

23

1 2

Another RefCell example T—

struct List<T> {

Separate nodes!

pub value: T,

pub next: Option<Box<List<T>>>,

impl<T> List<T> {

fn first (&mut self) -> &mut T { todo! () }
fn last (&mut self) -> gmut T { todo! () }
fn ends (&mut self) -> (&mut T, &mut T) {

(self.first (), self.last())

} error[E0499] : cannot borrow "*self as mutable more than once at a time
} --> partition bad.rs:22:20
I
21 fn ends (&mut self) -> (&mut T, &mut T) {
22 (self.first (), self.last())

I |
| second mutable borrow occurs here

|

I

I AAAAN AAAAN

I

|

| first mutable borrow occurs here

24

A quick aside on computability

Halting problem: Things you can’t decide just by looking at a
program
“Writing a program that decides whether a
turing machine halts on a given input is e Does this program leak memory?
impossible” e Does this program have a use-after-free
bug?
e Does this function always produce the
same output as another function?
e Does this program have a race condition?

Rice’s theorem:

“Statically deciding any non-trivial property of a
program is impossible”

25

Rust and decidability

Programs Rust would like to disallow for you at compile time

e Multiple mutable references at the same time
e Reference pointing to invalid memory

e etc
Pick One:
Unsound Incomplete
e All valid programs are allowed e Some valid programs aren’t allowed ki

e Some invalid programs are allowed & e Allinvalid programs aren’t allowed.

1 2

Another RefCell example T—

Separate nodes!

Lo

Incomplete

e Some valid programs aren't allowed &
e Allinvalid programs aren’t allowed.

fn first (&mut self) -> &mut T { todo! () }
fn last (&mut self) -> gmut T { todo! () }
fn ends (&mut self) -> (&mut T, &mut T) {

(self.first (), self.last())

} error[E0499] : cannot borrow "*self as mutable more than once at a time
} --> partition bad.rs:22:20
I
21 fn ends (&mut self) -> (&mut T, &mut T) {
22 (self.first (), self.last())
AAAAN AAAAN

I |
| second mutable borrow occurs here
first mutable borrow occurs here

A quick aside on computability

Halting problem:

“Writing a program that decides whether a
turing machine halts on a given input is
impossible”

Rice’s theorem:

“Statically deciding any non-trivial property of a
program is impossible”

Things you can’t decide just by looking at a

program
e Does this program leak memory?
e Does this program have a use-after-free
bug?
e Does this function always produce the
same output as another function?
e Does this program have a race condition?

dynamically (at run time)?

What about deciding

28

Another RefCell example

struct List<T> {
pub value: T,

pub next: Option<Box<List<T>>>,

impl<T> List<T> {
fn first (&mut self) -> &mut T { todo! ()
fn last (&mut self) -> &mut T { todo! ()
fn ends (&mut self) -> (&mut T, &mut T)

(self.first (), self.last())

}
}
{

B

Separate nodes!

use std::cell::RefCell;
use std::cell::RefMut;
struct List<T> {
pub value: T,
pub next: Option<Rc<RefCell<List<T>>>>,
}
impl<T> List<T> {
fn first (&self) -> RefMut<T> { todo! () }
fn last (&self) -> RefMut<T> { todo! () }
fn ends (&self) -> (RefMut<T>, RefMut<T>)
(self.first (), self.last())

|
}

{

&T/&mut T -> checked by compiler

Ref<T>/RefMut<T> checked dynamically by RefCell

29

RefCell/Rc takeaways

When needing multiple ownership, often use
Rc<RefCell<T>>

It's not that the compiler isn't smart enough to
validate your program, it’s that it’s impossible
to validate your program

30

Inherited mutability vs. interior mutability

struct Person {

fn clear name(p: &mut Person) {

Pp.name = name;,

Inherited mutability: can’t mutate the fields
unless you have a &nut reference

String

fn clear name(p: &RefCell<Person>) {

p.borrow mut () .name = name;

Interior mutability: allows mutating even with
a immutable reference (safety is checked by
some other mechanism)

31

Trait Objects

New generic syntax:

Exactly the same

fn foo<T: Debug>(value: T)

fn foo(value:

impl Debug)

{ todo! ()

{ todo! ()

}

}

33

Recall: No cost to use traits

trait Draw {

fn draw(&self) -> String

struct Circle {
radius: 132
}

impl Draw for Circle {

fn draw(&self) -> String { todo! ()

struct Rect {
size: (132, 132),
}

impl Draw for Rect {

fn draw(&self) -> String { todo! ()
https://godbolt.ora/z/n151dnK5q

fn show(shape: impl Draw) {

println! ("{}", shape.draw()):;

pub fn main() {
show(Circle { radius: 1 });
show(Rect { size: (1, 1) });
}
crate::show<Circle>:

sub rsp, 152

mov dword ptr [rsp + 12],

crate: :show<Rect>:

sub rsp, 152

mowv dword ptr [rsp + 1217,

edi

edi

34

https://godbolt.org/z/n151dnK5q

Returning generics

fn make drawable(is circle: bool) -> impl Draw {

if is circle {

Circle { radius: 1 }
} else {
Rect { size: (1, 1) }
}
}
error[E0308]: "if’ and “else’ have incompatible types

33
34

I

I

I
35 |
36 |
I

I

I

37

/
I
I
I
I
I
I
l__

-=-> draw.rs:36:5

if is circle {
Circle { radius: 1 }
-------------------- expected because of this
} else {
Rect { size: (1, 1) }
ANAAAANAANANNANANAAAA axpected “Circle’, found “Rect’

- "if’ and “else’ have incompatible types

35

Returning generics

fn make_drawable() -> impl Draw { Impossible to know whether Circle or Rect
if rand::thread rng().gen() { will be returned

Circle { radius: 1 }

} else { pub fn main() {

= k 1 ;
Rect { size: (1, 1) } let s make drawable()

println!("{}", std::mem::size of val(é&s)); ???
}

error[E0308]: "if’ and “else’ have incompatible types
--> draw.rs:36:5

33 | / if rand::thread rng().gen() {
34 | | Circle { radius: 1 }
| | W expected because of this
35 | | } else {
36 | | Rect { size: (1, 1) }
| ANANNANRNANNNANNAANAAN axpected "Circle’, found “Rect’
37 1 |
I

- "if’ and “else’ have incompatible types
36

Quick Quiz

fn foo<T: Draw>(v:

Circle { radius:

T)
1}

-> T {

Is this program valid?

37

Quick Quiz

fn foo<T: Draw>(v:

Circle { radius:

T)
1}

-> T {

Is this program valid?

No! Could be instantiated with T=Rect and
then returning a Circle is improper

38

Trait Objects

fn make drawable()

-> impl Draw {

if rand::thread rng() .gen() {

Circle { radius: 1 }

} else {

Rect { size: (1, 1) }

Generics have no run-time cost because we can
resolve them at compile-time, but what if we
can't?

39

Trait Objects

fn make drawable() -> Box<dyn Draw> { What type is in the box?
if rand::thread rng() .gen() {
EEN . 1. (radius: 1 1) e don’t know, all we know is we can call
| else { drawon it
Box: :new (Rect { size: (1, 1) })

fn foo () {
let s: Box<dyn Draw> = make drawable ();

s.draw () ;

Working with trait objects

Unknown size: always behind a reference of
some sort

Box<dyn Draw>
&dyn Draw

[J
[J
e &mut dyn Draw
[J

41

Trait object layout

pub fn main () {
let rect = Rect { size: (1, 1) };
let trait obj: Box<dyn Draw> =

Box::new (sq) ;

heap

code

Rect: :draw:

Rect
stack
10
Box<dyn Draw>
2
data ptr
vtable ptr
static
Rect vtable
draw(...)

sub rsp, 152

Circle vtable

mov dword ptr

[rsp + 12], edi

draw(...)

42

Cost of using trait objects

Normal function call

call blbbeba806fcl8e4

Call of static address
e Can beinlined by compiler
e No branch misprediction

Trait object function call

1 | load
mov rax, qword ptr [rax + 24]
lea rdi, [rsp + 16]
call rax

Call of dynamic address
e Can'tbe inlined by compiler
e Possible branch misprediction

https://godbolt.orq/z/f8Gh7Tss7 43

https://godbolt.org/z/f8Gh7Tss7

Another example

fn show all (v: Vec<&dyn Draw>) {
for item in v {

println! ("{}", item.draw());

}

fn main () {
show all (vec! [

Box::new (Circle { radius: 1 }),

Box::new (Rect { size: (1, 1) })1);

Vec that has “different types” in
it! (normally not allowed)

Allows implementing patterns from object
oriented programming

44

Today’s theme: offloading checks to run-time

Check at compile-time: no run-time Check at run-time: more flexibility

performance penalty . -
e multiple ownership with Rc

e single ownership e Ref and RefMut references from RefCell
e & and &mut references e generics withdyn T
e generics with <T>

45

