Lecture 3
Defining New Types

Which would cause undefined behavior if allowed by compiler?

A

fn

}

C

fn

main () {

let s = String::from("1905");

move a string (s);

let 82 = s;

main () {

let s = String::from("1905");

let s2 = s;
println! ("{}", s);

move a string (s2);

fn

}

D

fn

}

fn move a string(s:

String)

main () {

let s = String::from("1905");

let s2 = s;

move a string (s);

main () {

let s = String::from("1905");

move a string (s);

println! ("{}", s);

What are we missing?

4 CIS 1210 # Reset Search G

CIS 1210
Last Updated 9/4/2024, 2:04:54 PM Data structures and algorithms

Section Status: Varies by section
Schedule Type: Varies by section
Instruction Method: In Class
Campus: Philadelphia

Credit: Varies by section

Varies by section

Today: Data Structures!

Trying to make a linked list

What's a linked list?

val

—

val

/

val

nul

How would you go about implementing a Linked List
class in C or C++7?

What structs would you need?

What kinds of methods would you provide?
What would your test code look like?

In terms of memory errors we've been talking
about, what could go wrong?

Based on what you know about Rust so far,
what do you think will be challenging about
implementing a linked list in Rust?

Trying to make a linked list

What'’s a linked list?

val

/

—

val

val

nul

struct Node {

int wvalue;

Node* next;

int main () {

Node* first = (Node*) malloc (sizeof (Node)) ;
first->value = 1;

Node* second = (Node*) malloc (sizeof (Node)) :;
second->value = 2;

first->next = second;

/* do stuff (e.g., print the list) */
free (first);

free (second) ;

Defining data types in Rust

struct Person { struct keyword declares new structs
name: String, e each member has a name and a type
location: String, e instantiate structs using {}

}

fn main () {
let me = Person ({

name: String::from ("paul"),

location: String::from("Philadelphia")
I
println! ("{} lives in {}",

me.name,

me.location) ;

How to make a Node?

C:

struct Node {
int value;

Node* next;

Rust:
struct Node {
value: 132,

next: Node,

struct Node {
value: 132,

next: &Node,

struct Node {

value: 132,

Infinitely sized
struct

Borrowing
whose data?

next: /* pointer to a node...? */

How to make a Node? Box!

struct Node { e Make a Box of sometype T
value: 132, e a T gets put on heap, Box points to
next: Box<Node> that T

} e Box ownsthat T. When Box goes

out of scope, the T is destroyed.

Stack Heap

' | ' <un-init>
fn main () { i Box<u32> course ! un-init

let course = Box::new(1905);

Single Node List

struct Node {
value: 132,
next: Box<Node>

}

fn main() {
let list = Box::new (Node {
value: 1905,

next: /* null??*/

10

Single Node List

struct Node { . o
An Option<T>is either a T or None.
value: 132,
next: Option<Box<Node>>

}

fn main() {
let list = Box::new(Node { fn main() {
value: 1905, let student grade: Option<char> = Some('A'");

next: None let instructor grade: Option<char> = None;

) }

Two Node List

struct Node {

value: 132,

next: Option<Box<Node>>

}

fn main() {
let first = B
value: 19
next: Non
}) s

let second =

first.next =

ox::new (Node {
05,

e

Box::new (Node {value:

second;

What's wrong with
this?

1200, next: None}l);

12

Two Node List

struct Node {

value: 132,

next: Option<Box<Node>>

}

fn main() {

let mut first

value:

= Box::new (Node {

1905,

next: None

)
let second

first.next

Box::new (Node {value:

Some (second) ;

1200, next: None}l);

13

Three Node List

struct Node {
value: 132,
next: Option<Box<Node>>

}

fn main() {

let mut first = Box::new(Node {

value: 1905,
next: None

)

error[E0382]: assign to part of moved value: "~ *second’
--> list.rs:15:5

13 | let third = Box::new(Node {value: 4100,next: None});
14 | first.next = Some (second);

r"n e value moved here
15 | second.next = Some (third);

|

ANAAAAANANL yyalue partially assigned here after move

structs own their data
e therefore, assigning to a struct
member transfers ownership

let mut second = Box::new (Node {value: 1200,next: None});

let third = Box::new(Node {value: 4100,next: None});

first.next = Some (second) ;

second.next = Some (third);

14

Three NOde List first second third

struct Node { * * *
owns owns
value: 132,

next: Option<Box<Node>>

val val val | nul

}

fn main() {

owns

let mut first = Box::new(Node {

Implication: when *first’ is dropped:
value: 1905,

e First node of listis dropped,

next: None e ..so Option (in Node struct) is
b ; dropped,
let mut second = Box::new (Node {value: 1200,next: None}); 1 .”solBox(hw()pﬁon)isckopped,
let third = Box::new(Node {value: 4100,next: None}); ® '”SosecondTQOde(”]Box)G
. dropped.
first.next = Some (second):;
.-.; _
second.next = Some (third);

“Chain of ownership”
}

Three Node List Second Attempt

struct Node {

value: 132, first second third
next: Option<Box<Node>> *
owns
}
fn main() {
val val val | nul
let mut first = Box::new(Node {

value: 1905, owns owns

next: None
}) s
let mut second = Box::new (Node {value: 1200,next: None});
let third = Box::new(Node {value: 4100,next: None});

second.next = Some (third); =—

swap order

first.next = Some (second); <——

Traversing List

struct Node {
int value;
Node* next;
}
Node *curr = first;
while (curr != NULL) {
printf (“$d\n”, curr->value);

curr = curr->next;

17

Traversing List

struct Node {
value: 132,

next: Option<Box<Node>>

}

fn main () {

let first: Box<Node> = todo! ();

let curr = /* 2?2 */;

while curr != /* NULL ? */ {
println! ("{}", curr.value);
curr = curr.next;

18

Traversing List

struct Node {

value: 132,
next: Option<Box<Node>>
}
fn main () {
let first: Box<Node> = todo! ();
let curr = /* 2?2 */;

l= /% NULM

println! ("{}",

while curr

curr.value) ;

curr = curr.next;

What should curr be?

Can’t use pointers
Don’t want to take ownership

19

Traversing List

struct Node {
value: 132,

next: Option<Box<Node>>

}

fn main () {

let first: Box<Node> = todo! ();

let mut curr = Some (&first)s

while curr != None { *
println! ("{}", curr.value);
curr = curr.next;

curr has type Option<&Box<Node>
e contains either a reference to a
box containg Node or None

20

Traversing List

struct Node {
value: 132,

next: Option<Box<Node>>

}

fn main () {

let first: Box<Node> = todo! ();

let mut curr = Some (&first);
while curr != None {
println! ("{}", curr.value);
curr = curr.next;
) error[E0609]: no field ‘value on type “Option<&Box< >>°
} --> list.rs:11:30

I
11 | println! ("{}", *curr.value);

Traversing List

struct Node {
value: 132,

next: Option<Box<Node>>

}

fn main () {

let first: Box<Node> = todo! ();

let mut curr = Some (&first);
while curr != None {
println! ("{}", curr.value);
curr = curr.next;

-

loop {
match curr {
Some (node) => {
println! ("{}",
de .value) ;
curr = node.next.as ref ();
by

None => break

22

Traversing List

struct Node {
value: 132,

next: Option<Box<Node>>

}

fn main () {

let first: Box<Node> = todo! ();

let mut curr = Some (&first);
while curr != None {
println! ("{}", curr.value);
curr = curr.next;

>‘\\\\\‘\\ﬂ«@@le.value);

-

loop {

match curr {
Some (node) => {

printlin! ("{}",

curr = node.next;

b

None => break

Separating functionality

std::list<int> myList;
myList.push front (200);
myList.push front (300);
myList.pop back ();

Goal: associate functionality with
data by writing methods like
push_front

24

Separating functionality

struct LinkedList {
head: Option<Box<Node>>,

length: usize, // optional

25

Separating functionality

struct LinkedList {

head: Option<Box<Node>>,

length: usize, // optional
}
impl LinkedList {

fn new () -> LinkedList {

LinkedList {
head: None,

length: O,

impl blocks:

e write functions associated with a type
e accessible as LinkedList: :new()

Constructors:

e don'texistin Rust
e By convention, provide a new function to
create instances of your type

26

Separating functionality

struct LinkedList {

head: Option<Box<Node>>,

length: usize, // optional
}
impl LinkedList {

fn new () -> LinkedList {

LinkedList {
head: None,

length: O,

} error[E0425]:
--> list.rs:14:9

fn len () -> usize { |

length 14 |
I

cannot find value "length’ in this scope

length

AAAAAA

27

Separating functionality

struct LinkedList {

head: Option<Box<Node>>,

length: usize, // optional
}
impl LinkedList {

fn new () -> LinkedList {

LinkedList {
head: None,

length: O,

}

fn len (&self) -> usize {

self.length

Methods

e Just functions that take a self parameter
e Cantake self, &self, or&mut self

fn main () {
let list = LinkedList ::new():;
let len = list.len();

28

Quiz: self, &self, or &mut self

impl String {
fn pop last(???)

impl String {

fn to uppercase(???) —-> String

impl String {

fn suffix(??2?) -> &str

impl u32 {

fn increment(?2?7?)

29

Structs

Declared with struct keyword

Can’t contain themselves directly, use a Box
to break up recursion
Initialized with brackets (Node {value:1})

Declare functions associated with a struct using
an impl block

associated functions: don't take a self
parameter and are called like Node : :new()
methods: take self, &self, or &mut self
and are called like 1ist.len();

By convention, provide a new function that acts as
a constructor

Box owns a value allocated on the heap

e When the box goes out of scope, the
value is deallocated
e Auto-deref Box<T>into &T or &mut T

Structs have ownership of their values

e Accessing a struct element can move data
out of the struct

e Assigning to a struct element can move
data into that struct

30

Other structs you might see: tuple structs

struct Point { x: 132, y: 132 }}
fn main () {
let p = Point { x: 1, y: 2 };}
let x = p.x;
let v = p.y;

match p { A

-
Point { x:

println! ("{}, {}", x,

~N

x coord, y: y coord } =>

y)

struct Point (132, i32) }
fn main () {
let p = Point (1, 2);}
let x = p.0;
let v = p.1;
—

Point (x, y) => {

match p {

println! ("{},

{r, x, Y);

Struct field names are optional-structs without field names are “tuple structs”

31

Other structs you might see: wrapper types

impl £32 | error[E0390] : cannot define inherent “impl"~ for
primitive types

--> wrapper.rs:1:1

self * 2.54 I

1 | impl £32 {

} I AAAAAAAAN

fn to centimeters (self) -> £32 {

struct TInches (f32); Wrap an existing type in a struct

impl Inches { e Separate functionality (e.g. distinguish

inches from centimeters at the type leve)
e Add functionality to primitive types

fn to centimeters (self) -> £32 {
self.0 * 2.54

Making our own Option

Option: a type thatis a value OR no value

structs: a type that is a value AND another
value (and another and another...)

No way to implement Option with struct

e Need a new language construct...

33

Making our own Option

enum NumOption {
Some (u32),

None

fn main () {
let id = NumOption::Some (5);
match id {
NumOption::Some (i) =>
println! ("{} is some",
NumOption : :None =>

println! ("None")

i),

Enums!

e Better than C enums -> can contain data
o Like OCaml type keyword

NumOption can be in one of two states:
e Some, in which case a value of type u32 is
guaranteed to be present

e None, in which case no values are present

Access different constructors using : : syntax

Destructure using pattern matching

34

Making our own Option

enum NumOption { Enums can have methods/associated functions
Some (u32), as well
None

impl NumOption {
fn subtract one(&mut self) {
match self {
NumOption::Some (i) => *i -= 1,

NumOption: :None => {}

35

Quiz time

enum Tree {
Node (Tree, Tree),

Leaf (u32),

What don’t you like?

36

Option’s Cousin: Result

enum Result<T, E>
Ok (T),
Err (E),

{

fn create (path: String) ->

impl £32 {

fn from str (src:

&str)

Result has either a success value of type T,
or an error value of type E.

e E contains data (often an error

message) that clarifies what the exact
error was

Preferred over Option when more context
for the error is needed

Result<File, IoError>

-> Result<f32, ParseFloatError>

37

Quiz: Result or Option?

fn

fn

fn

fn

divide (numerator:

£32, denominator:

£32) => 272?272<£32>

binary search (haystack: &[132], needle: 132) -> ???<usize>

write (path:

first char(s:

String,

&str)

contents: &[u8])

-> ?7??<char>

-> ???<usize>

38

Error Handling Woes

fn main() =-> Result<(), &str> { So much code just to open and write to a

let mut file = match File::create("foo.txt") { filel

Ok (file) => file,

Err() => return Err("Failed to create file"), ® MOStOfit,Serorhand“ng
s e There must be a better way...
match file.write all(b"Hello, world!") {

Ok() => {},

Err() => return Err("Failed to write to file",

}i
match file.flush() {
Ok() => {1},

Err() => return Err("Failed to flush file"),

i
return Ok (());

Error Handling Woes

fn main() -> Result< (), &'static str> {
let mut file = File::create("foo.txt").unwrap();
file.write all(b"Hello, world!").unwrap():;
file.flush () .unwrap() ;
return Ok (());

Justunwrap it all

Method available on Option and
Result
Returns the inner type or aborts the

program if not available (i.e. None or
Err)

40

About print...

So far, we've seen magic printing with
println! Butif we use our own types...

error[E0277] :
struct Id { |

id: u32 7 1
) |

formatter

println! ("{}",

"Id’ doesn't implement “std::fmt::Display’

--> print.rs:7:20

id);
AAr "Id° can’t be formatted with the default

fn main () {

let id = Id { id: 1905 };

println! ("{}", id);

But implementing print functions is boilerplate,
just print every member right?

41

Deriving traits

So far, we've seen magic printing with Use #[derive(...)] to automatically
println! Butif we use our own types... implement functionality

e e.g.printing, hashin
[derive (Debug)] g.p g g
struct Id {

id: u32

fn main () {

let 1d = Id { 1d: 1905 }; > rustc print.rs && ./print

println! ("{:2}", id); Id { id: 1905 }

Acknowledgements

Inspiration for these slides drawn from cs110L
at Stanford

43

