
CIS 190: C/C++ Programming

Lecture 12

Student Choice

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

Hash Maps (AKA Hash Tables)

• data structure that maps keys to values

• a hash function takes a given key and
outputs an index into an array,
where the value will be stored

• providing the same key will produce the
same index, where the value is stored

Hash Map Example

• key: name

• value: phone number

• the Hash() function gives an integer; then
use modulus to get a valid index for the table

Hash(“Jenny”) = 68; 68 % 4 = 0;

Hash(“Egon”) = 41; 41 % 4 = 1;

0 867-5309

1 555-2368

2

3

Choosing a Hash Function

• a good hash function is

– easy to compute

– has a uniform distribution of keys

• hash function uniformity is dependent
on the size of the hash map

– powers of two

– prime numbers

Why Use Hash Maps?

• speed

• in best-case scenario, the lookup time is O(1);
the requested value is found immediately

• in worst-case scenario (collisions),
lookup time can be O(n)

– this scenario is incredibly rare

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

Collisions

• occur when two keys map to the same index

• many ways of handling, dependent on situation

– chaining

– open addressing

– etc.

Hash Map Example – Setup

• key: class number

• value: class name

• examples:

– key: 190 value: C++ Prog.

– key: 191 value: Python

• have less than a dozen entries, so our hash
map size will be 11 (prime number)

Hash Map Example – Function

• the Hash() function we’re going to use is very
naïve and not very good

• the function is very simple: the digits of the
key are multiplied together, excepting zeroes

• so Hash(123) = 1 * 2 * 3 = 6

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

Hash Map Example – Using

• let’s add “190 - C++ Prog.”
0

1

2

3

4

5

6

7

8

9

10

Hash Map Example – Using

• let’s add “190 - C++ Prog.”

– Hash(190) = 1 * 9 = 9

0

1

2

3

4

5

6

7

8

9

10

Hash Map Example – Using

• let’s add “190 - C++ Prog.”

– Hash(190) = 1 * 9 = 9

0

1

2

3

4

5

6

7

8

9 C++ Prog.

10

Hash Map Example – Using

• let’s add “190 - C++ Prog.”

– Hash(190) = 1 * 9 = 9

• and also “240 - Comp Arch.”

– Hash(240) = 2 * 4 = 8

0

1

2

3

4

5

6

7

8

9 C++ Prog.

10

Hash Map Example – Using

• let’s add “190 - C++ Prog.”

– Hash(190) = 1 * 9 = 9

• and also “240 - Comp Arch.”

– Hash(240) = 2 * 4 = 8

0

1

2

3

4

5

6

7

8 Comp Arch.

9 C++ Prog.

10

Hash Map Example – Using

• let’s add “190 - C++ Prog.”

– Hash(190) = 1 * 9 = 9

• and also “240 - Comp Arch.”

– Hash(240) = 2 * 4 = 8

• and then “262 - Automata”

– Hash(262) = 2 * 6 * 2 = 24

0

1

2

3

4

5

6

7

8 Comp Arch.

9 C++ Prog.

10

Hash Map Example – Using

• let’s add “190 - C++ Prog.”

– Hash(190) = 1 * 9 = 9

• and also “240 - Comp Arch.”

– Hash(240) = 2 * 4 = 8

• and then “262 - Automata”

– Hash(262) = 2 * 6 * 2 = 24

– 24 is too large, so we’ll use
mod: 24 % 11 = 2

0

1

2

3

4

5

6

7

8 Comp Arch.

9 C++ Prog.

10

Hash Map Example – Using

• let’s add “190 - C++ Prog.”

– Hash(190) = 1 * 9 = 9

• and also “240 - Comp Arch.”

– Hash(240) = 2 * 4 = 8

• and then “262 - Automata”

– Hash(262) = 2 * 6 * 2 = 24

– 24 is too large, so we’ll use
mod: 24 % 11 = 2

0

1

2 Automata

3

4

5

6

7

8 Comp Arch.

9 C++ Prog.

10

Hash Map Example – Using

• so far so good!

• let’s add “191 - Python”

– Hash(191) = 1 * 9 * 1 = 9

0

1

2 Automata

3

4

5

6

7

8 Comp Arch.

9 C++ Prog.

10

Hash Map Example – Using

• so far so good!

• let’s add “191 - Python”

– Hash(191) = 1 * 9 * 1 = 9

• “Python” is colliding with
“C++ Prog.”

0

1

2 Automata

3

4

5

6

7

8 Comp Arch.

9 C++ Prog.

10

Hash Map Example – Decisions

• require that we have been
storing the key with the
value

• this is a decision you need
to make when you first set
up your hash map

0

1

2 262 Automata

3

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10

Hash Map Example – Decisions

• now we can use open
addressing or chaining

0

1

2 262 Automata

3

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

Collisions – Open Addressing

• key is stored with the value in the given index

• when a collision occurs, the hash table is probed
until an empty index has been found

– different probe sequences can be used

• using that same probe sequence, you can then
find the given value when you use the same key

Hash Map Example – Open Addressing

• for open addressing, we
need to choose a probe
procedure

0

1

2 262 Automata

3

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10

Hash Map Example – Open Addressing

• for open addressing, we
need to choose a probe
procedure

• for simplicity’s sake, we’ll
use linear probing

– interval of probes is fixed

– we’ll use an interval of 1

0

1

2 262 Automata

3

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10

Hash Map Example – Open Addressing

• for open addressing, we
need to choose a probe
procedure

• for simplicity’s sake, we’ll
use linear probing

– interval of probes is fixed

– we’ll use an interval of 1

0

1

2 262 Automata

3

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10 191 Python

Hash Map Example – Open Addressing

• “120 – Prog. I”

– Hash(120) = 1 * 2 = 2

0

1

2 262 Automata

3

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10 191 Python

Hash Map Example – Open Addressing

• “120 – Prog. I”

– Hash(120) = 1 * 2 = 2

0

1

2 262 Automata

3 120 Prog. I

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10 191 Python

Hash Map Example – Open Addressing

• “120 – Prog. I”

– Hash(120) = 1 * 2 = 2

• “121 – Prog. II”

– Hash(121) = 1 * 2 * 1 = 2

0

1

2 262 Automata

3 120 Prog. I

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10 191 Python

Hash Map Example – Open Addressing

• “120 – Prog. I”

– Hash(120) = 1 * 2 = 2

• “121 – Prog. II”

– Hash(121) = 1 * 2 * 1 = 2

0

1

2 262 Automata

3 120 Prog. I

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10 191 Python

Hash Map Example – Open Addressing

• “120 – Prog. I”

– Hash(120) = 1 * 2 = 2

• “121 – Prog. II”

– Hash(121) = 1 * 2 * 1 = 2

0

1

2 262 Automata

3 120 Prog. I

4 121 Prog. II

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10 191 Python

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

Collisions – Chaining

• key is stored with the value in the index’s list

• each index has a list of entries

• when a collision occurs, the new value is
added to the list

– sorted

– at end

– at beginning

Hash Map Example – Chaining

• chaining is even more
different than open
addressing

• in addition to storing
keys with the values,
the indexes instead
contain pointers to a
list of key/value pairs

0

1

2 262 Automata

3

4

5

6

7

8 240 Comp Arch.

9 190 C++ Prog.

10

Hash Map Example – Chaining

• chaining is even more
different than open
addressing

• in addition to storing
keys with the values,
the indexes instead
contain pointers to a
list of key/value pairs

0 Ø

1 Ø

2

3 Ø

4 Ø

5 Ø

6 Ø

7 Ø

8

9

10 Ø

262 Automata Ø

240 Comp. Arch Ø

190 C++ Prog. Ø

Hash Map Example – Chaining

• so when we go to add
“191 - Python” at
index 9

0 Ø

1 Ø

2

3 Ø

4 Ø

5 Ø

6 Ø

7 Ø

8

9

10 Ø

262 Automata Ø

240 Comp. Arch Ø

190 C++ Prog. 191 Python Ø

Hash Map Example – Chaining

• and as we add “120 -
Prog. I” to index 2

0 Ø

1 Ø

2

3 Ø

4 Ø

5 Ø

6 Ø

7 Ø

8

9

10 Ø

262 Automata

240 Comp. Arch Ø

190 C++ Prog. 191 Python Ø

120 Prog. I Ø

Hash Map Example – Chaining

• and “121 - Prog . II”

0 Ø

1 Ø

2

3 Ø

4 Ø

5 Ø

6 Ø

7 Ø

8

9

10 Ø

262 Automata

240 Comp. Arch Ø

190 C++ Prog. 191 Python Ø

120 Prog. I

121 Prog. II Ø

Hash Map Variations

• array of elements of needed size
– alone

– with elements allowing pointers to next in that
index

• array of pointers
– to (list of) elements

– better in terms of space needed, if entries are
larger than the size of a pointer

Drawbacks of Hash Maps

• collisions

• pseudo-random order

– can’t find next closest entry

• hash function may take a long time

• not very good for small numbers of things

• resizing can be a very slow operation

– necessary to rehash all stored entries

• means you need to store key with value as well

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

Hash Maps in C++

• there is technically a hash_map library

– but it never made it into the STL

– probably shouldn’t rely on it (or use it)

• there are two standard STL containers you can
use to help implement a hash map:
– map

– unordered_map

Map Containers

• map and unordered_map take a
variable type for both key and value
– map <string, int> mapInstance;

• maps are ordered by key

• unordered_maps are not

– take a Hash function as an argument

– unordered_maps require C++11

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

C++ STL

• Standard Template Library

• set of ready-made common classes

– Iterators

– Algorithms

– Functors

– Containers

C++ STL – Iterators

• iterators are used to traverse containers

• five types:

– input, output, forward, bidirectional, random access

• iterators allow the STL to be flexible

– can write a function using iterators that
will work for both lists and vectors

• not always good for associative containers

– have their own member functions for most things

C++ STL – Algorithms

• utility functions

– searches

– sorts

– merges

– partitioning

– etc.

C++ STL – Functors

• also called function objects

• classes that overload the function call operator
– operator()

• allows you to declare an object that
can be work as and be treated as a function

– can be passed into many STL functions

Outlines

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

C++ STL – Containers

• four different types of containers

– sequence containers

– arrays (require C++11)

– vectors

– deque FIFO & FILO capable

– forward_list single-linked list (C++11)

– list doubly-linked list

C++ STL – Containers

• four different types of containers

– container adaptors

• provide an interface that relies on a container class

– stack FILO only

– queue FIFO only

– priority_queue modified queue

• first element is always the largest

C++ STL – Containers

• four different types of containers

– associative containers

– map store keys and values together

– set only store keys (value is the key)

– multi- allow non-unique keys

– use a compare function to sort elements by key

C++ STL – Containers

• four different types of containers

– unordered associative containers (require C++11)

• unordered_(multi)map/set

– unordered_map will work as a hash map!

• can take a key, a value, and a hash function

• hash maps are inherently unordered, which is
why a regular map container won’t work

Outline

• Hash Maps
– Collisions

– Using
• Open Addressing Collisions

• Chaining Collisions

– In C++

• C++ STL
– Containers

• C++ GUI Resources

C++ GUI – Intro

• GUI – Graphical User Interface

• before now, we’ve been using a CLI, or a
Command Line Interface

• many GUI libraries/toolkits (for C++ and other
languages) are for a specific operating system

– avoid these, they tie you to a single OS

C++ GUI – Qt

• one of the most popular software dev packages
for creating applications with GUIs
– works across multiple platforms

• Qt uses standard C++
– also has implementations for SQL databases, XML,

interacting with multimedia, etc.

– IDE is called Qt Creator; cross-platform

• qt-project.org

Project

• Alphas due Monday at midnight!

– DO NOT TURN YOUR ALPHAS IN LATE

– will grade the most recent submission

• your alphas and final project do not
have to run (or compile) on eniac

– however, you still must submit all your
files, including a Makefile

