CIS 190: C/C++ Programming

Polymorphism



Outline

* Review of Inheritance
* Polymorphism
— Car Example

— Virtual Functions

* Virtual Function Types
— Virtual Table Pointers
— Virtual Constructors/Destructors



Review of Inheritance

* specialization through sub classes

 child class has direct access to:
— parent member functions and variables that are:
* public
* protected
e parent class has direct access to:
— nothing in the child class



What is Inherited

Parent Class

* public
members e private functions
* protected * copy constructor
members e assignment operator
* constructor
* private e destructor

variables




What is Inherited
Child Class Parent Class

* public
e subclass members e private functions
members e protected . copy constructor
(functions & members * assignment operator

* constructor
 destructor

variables)

* private
variables




Outline

e Review of Inheritance
* Polymorphism

— Car Example

— Virtual Functions

* Virtual Function Types
— Virtual Table Pointers
— Virtual Constructors/Destructors



What is Polymorphism?

 ability to manipulate objects in a
type-independent way

* already done to an extent via overloading

e can take it further using subtyping,
AKA inclusion polymorphism



Using Polymorphism

* only possible by using pointers to objects

e a pointer of a parent class type can point
to an object of any child class type
Vehicle *vehicPtr = &myCar;

* thisis valid because myCar is-a Vehicle



Outline

e Review of Inheritance
* Polymorphism

— Car Example

— Virtual Functions

* Virtual Function Types
— Virtual Table Pointers
— Virtual Constructors/Destructors



Car Example

Car

B -

SUV Sedan

Van

Jeep

class SUV: public Car

class Sedan: public Car

class Van: public Car

class Jeep: public Car

{/*etc*/};
{/*etc*/};
{/*etc*/};
{/*etc*/};



Car Example: Car Rental

* implement a catalog of cars available for rental

* how could we do this (using vectors)?



Car Example: Car Rental

* implement a catalog of cars available for rental

* two options:
— separate vector for each type of Car (SUV, Van, etc.)
* have to add a new vector if we add new type
* must have separate variables for each vector
— single vector of Car pointers
* no changes necessary if we add new type



Car Example: Car™ vector

vector <Car*> rentall.ist;

vector of Car* objects

SUV

SUV

Jeep

Van

Jeep

Sedan

Sedan

SUV




Outline

e Review of Inheritance
* Polymorphism

— Car Example

— Virtual Functions

* Virtual Function Types
— Virtual Table Pointers
— Virtual Constructors/Destructors



Polymorphism Limitations

* parent classes do not inherit from child classes
— not even public member variables and functions

vehicPtr->PrintSpecs () ;
— will call Vehicle’s PrintSpecs() function, not Car’s

vehicPtr->Drive () ;

— will not work; Drive() is a function only of the Car
class, and vehicPtr can’t access it



Virtual Functions

e can grant access to child methods by
using virtual functions

* to do this, declare the function in the
parent class with the keyword virtual

— can also use virtual keyword in child class,
but not required



Virtual Function Example

class Vehicle{
virtual wvoid Drive() ;
/* rest of wvehicle class */
}
class Car: public Vehicle ({
void Drive() ;
/* rest of car class */



Outline

e Review of Inheritance
* Polymorphism
— Car Example

— Virtual Functions
* Virtual Function Types

— Virtual Table Pointers
— Virtual Constructors/Destructors



Function Types — Pure Virtual

virtual void Drive() = 0;

denoted with an “= 0" at end of declaration
this makes the class an abstract class

child classes must have an implementation
of the pure virtual function

cannot declare objects of abstract class types



Function Types — Virtual

virtual void Drive() ;
e parent class must have an implementation

 child classes may override if they choose to
— if not overridden, parent class definition used



Function Types — Non-Virtual

void Drive () ;
e parent class should have an implementation

* child class cannot override function
— parent class definition always used

* should be used only for functions that
won’t be changed by child classes



Outline

e Review of Inheritance
* Polymorphism
— Car Example

— Virtual Functions

* Virtual Function Types
— Virtual Table Pointers
— Virtual Constructors/Destructors



Behind the Scenes

e assume our Driwve () function is pure virtual

* how does the compiler know which child
class’s version of the function to call?

vector of Car* objects

SUV SUv Jeep Van Jeep Sedan Sedan SUv




Virtual Tables

* |lookup tables of functions

— employed when we use polymorphism

e virtual tables are created for:
— classes with virtual functions
— child classes derived from those classes

* handled by compiler behind the scenes



Virtual Table Pointer

 compiler adds a hidden variable that points to
the appropriate virtual table of functions

SUV SUV Jeep Van Jeep Sedan Sedan SUV




Virtual Table Pointer

 compiler adds a hidden variable that points to

the appropriate virtual table of functions

SUV

SUV

Jeep

Van

Jeep

Sedan

Sedan

SUV

* vptr

* _vptr

* _vptr

* _vptr

* _vptr

* vptr

* _vptr

* _vptr




Virtual Table Pointer

 compiler adds a hidden variable that points to

the appropriate virtual table of functions

SUV

SUV

Jeep

Van

Jeep

Sedan

Sedan

SUV

* vptr

* _vptr

* _vptr

* _vptr

* _vptr

* vptr

* _vptr

* _vptr

SUV virtual table

Jeep virtual table

Van virtual table

Sedan virtual table




Virtual Table Pointer

 compiler adds a hidden variable that points to

the appropriate virtual table of functions

SUV

SUV

Jeep

Van

Jeep

Sedan

Sedan

SUV

* vptr

* _vptr

* _vptr

* _vptr

* _vptr

* vptr

* _vptr

* _vptr

SUV virtual table

Jeep virtual table

Van virtual table

Sedan virtual table

* to SUV::Drive();

* to Jeep::Drive();

* to Van::Drive();

* to Sedan::Drive();




Virtual Table Pointer

 compiler adds a hidden variable that points to

the appropriate virtual table of functions

SUV

SUV

Jeep

Van

Jeep

Sedan

Sedan

SUV

* vptr

* _vptr

* _vptr

* _vptr

* _vptr

* vptr

* _vptr

* _vptr

SUV virtual table

Jeep virtual table

Van virtual table

Sedan virtual table

* to SUV::Drive();

* to Jeep::Drive();

* to Van::Drive();

* to Sedan::Drive();




Outline

e Review of Inheritance
* Polymorphism
— Car Example

— Virtual Functions

* Virtual Function Types
— Virtual Table Pointers
— Virtual Constructors/Destructors



Virtual Destructors

Vehicle *vehicPtr = new Car;

delete wvehicPtr;

* non-virtual destructors will only
invoke the base class’s destructor

e for any class with virtual functions, you
must declare a virtual destructor as well



Virtual Constructors

* not a thing... why?



Virtual Constructors

* not a thing... why?

* we use polymorphism and virtual functions to
manipulate objects without knowing type or
having complete information about the object

* when we construct an object,
we have complete information

— there’s no reason to have a virtual constructor



Project Alphas

e due next Monday (April 14th)

* doesn’t:
—have to be working

—a complete project

* in a folder named <your _team_ name>



