CIS 190: C/C++ Programming

Lecture 10

Inheritance

Outline

Code Reuse
Object Relationships

Inheritance
— What is Inherited
— Handling Access

Overriding

Code Reuse

* important to successful coding

e efficient

— no need to reinvent the wheel

e error free (more likely to be)

— code has been previously used/test

Code Reuse Methods

 functions

e classes

* inheritance

— what we’ll cover now

Outline

Code Reuse
Object Relationships

Inheritance
— What is Inherited
— Handling Access

Overriding

Object Relationships

* two types of object relationships

* |S-a

— inheritance

* has-a

— composition | both are forms
— aggregation of association

Inheritance Relationship

a Car is-a Vehicle
 the Car class inherits from the Vehicle class

* Vehicle is the general class, or the parent class

e Caris the specialized class, or child class, that
is a subclass of Vehicle

Inheritance Relationship Code

class Vehicle {

public:
// functions
private:
int m numAxles;
int m numWheels;
int m maxSpeed;

double m weight;
// etc

Inheritance Relationship Code

class Car: public Vehicle {

public:

//functions
private:

int m numSeats;

double m MPG;
string m color;
string m fuelType;
// etc

Inheritance Relationship Code

class Truck:
public Vehicle { /*etc*/ };

class Plane:
public Vehicle { /*etc*/ };

class UnmannedDrone:
public Vehicle { /*etc*/ };

class SpaceShuttle:
public Vehicle { /*etc*/ };

class Submarine:
public Vehicle { /*etc*/ };

Composition Relationship

a Car has-a Chassis

* the Car class contains an object of type Chassis

e a Chassis object is part of the Car class

e a Chassis cannot “live” out of context of a Car
— if the Car is destroyed, the Chassis is also destroyed

Composition Relationship Code

class Chassis {
public:
//functions
private:
string m material;
double m weight;
double m maxLoad;
// etc

Composition Relationship Code

class Car: public Vehicle ({
public:
//functions
private:
// member wvariables, etc.

// has-a (composition)
Chassis m chassis;

Aggregation Relationship

a Car has-a Person (driver)

the Car class is linked to an object of type Person

the Person class is not related to the Car class
a Person can live out of context of a Car

a Person must be “contained” in the Car
object via a pointer to a Person object

Aggregation Relationship Code

class Person {

public:
// functions

private:
string m firstName;
string m lastName;
double m height;
double m weight;
// etc

Aggregation Relationship Code

class Car: public Vehicle ({
public:
//functions
private:
// member wvariables, etc.

// has-a (aggregation)
Person *m driver;

Outline

Code Reuse
Object Relationships

Inheritance
— What is Inherited
— Handling Access

Overriding

Inheritance Access

e inheritance can be done via
public, private, or protected

— like member functions and member variables

* we're going to focus exclusively
on public inheritance

e you can also have multiple inheritance;
we won’t be covering it

Hierarchy Example

Vehicle

E— E——

Car

Truck

Plane

etc.

I%ﬁ_\

Specialization

SUV

Sedan

Van

Jeep

<

Hierarchy Vocabulary

 more general class (e.g., Vehicle) can be called:
— parent class
— base class
— superclass

* more specialized class (e.g., Car) can be called:
— child class
— derived class
— subclass

Hierarchy Details

e parent class contains all that is common among
its child classes

— Vehicle has a maximum speed, a weight, etc.
because all vehicles have these

* member variables and functions of the parent
class are inherited by all of its child classes

e child classes can use, extend, or
replace the parent class behaviors

Hierarchy Details

use, extend, or replace base class behaviors

use
— entirely unchanged (e.g., mutators, accessors, etc.)

extend

— create entirely new behaviors (e.g., RepaintCar(),
new mutators/accessors, etc.)

replace
— overriding functions (covered later)

Outline

Code Reuse
Object Relationships

Inheritance
— What is Inherited
— Handling Access

Overriding

What is Inherited

Vehicle Class

* public members
e protected members
* private variables

e private functions
* copy constructor
e assignment operator
e constructor
* destructor

What is Inherited

Car Class

Vehicle Class

e subclass

members
(functions &
variables)

public fxns&vars
protected fxns&vars
private variables

private functions
copy constructor
assignment operator
constructor
destructor

What is Inherited

Car Class Vehicle Class

* public

fxns&vars
* subclass
* protected
members . .
fxns&vars e private functions

(functions &
variables)

e copy constructor

e assignment operator
e constructor
e destructor

* private
variables

What is Inherited

Car Class Vehicle Class

* public

e subclass fxns&vars
members e protected
(functions & fxns&vars * private functions
variables) _ * copy constructor
° private * assignment operator
e constructor
N, Y e destructor

not (directly) accessible
to Car objects

What is Inherited

Car Class Vehicle Class

* public
e subclass fxns&vars
members e protected
(functions & fxns&vars * private functions
variables) _ * copy constructor
° private * assignment operator
N, Y e destructor

not (directly) accessible can access and invoke, but
to Car objects are not directly inherited

Outline

Code Reuse
Object Relationships

Inheritance
— What is Inherited
— Handling Access

Overriding

Handling Access

 child class has access to parent class’s:
— public member variables
— public member functions
— protected member variables
— protected member functions

* how should we set the access modifier for
variables we want the child class to access?

Handling Access

* we should not make these variables protected!

* |eave them private!

* instead, child class uses protected functions
when interacting with parent variables
— mutators

— dCCeSSOors

Outline

Code Reuse
Object Relationships

Inheritance
— What is Inherited
— Handling Access

Overriding

Specialization

* child classes are meant to be
more specialized than parent classes

— adding new member functions
— adding new member variables

 child classes can also specialize by overriding
parent class member functions

— child class uses exact same function signature

Overriding vs Overloading

* overloading

— use the same function name, but with different
parameters for each overloaded implementation

e overriding

— use the same function name and parameters, but
with a different implementation

— child class method “hides” parent class method
— only possible by using inheritance

Overriding/Overloading Examples

e Vehicle class contains these public functions
void Upgrade() ;
void PrintSpecs() ;

void Move (double distance) ;

e Car class inherits all of these public functions
— can therefore override them

Overriding Example

e Car class overrides Upgrade()
void Car: :Upgrade ()

{

// entirely new Car-only code

 when Upgrade() is called on a object of type
Car, the Car::Upgrade() function is invoked

Overriding (and Calling) Example

e Car class overrides and calls PrintSpecs()
void Car: :PrintSpecs ()

{
Vehicle: :PrintSpecs() ;

// additional Car-only code

e can explicitly call a parent’s function by using
the scope resolution operator

Attempted Overloading Example
* Car class attempts to overload the function

Move(double distance) with new parameters

void Car: :Move (double distance,

double avgSpeed)

// new overloaded Car-only code

* but this won’t work the way we expect!

Precedence

overriding takes precedence over overloading

— instead of overloading the Move() function, the
compiler assumes we are trying to override it

declaring Car: :Move (2 parameters)
overrides Vehicle: :Move (1 parameter)

we no longer have access to the original
Move() function from the Vehicle class

Overloading in Child Class

* must have both original and
overloaded functions in child class

void Car: :Move (double distance) ;
void Car: :Move (double distance,

double avgSpeed) ;

I”

* “original” one parameter function
can then explicitly call parent function

Homework 6

check validity of input values
acceptable does not mean guaranteed!

be extra careful with following coding
standards, and making appropriate decisions

any guestions?

Project

proposal due next week in class

alphas due 1 2 weeks after proposal

please don’t turn in anything late!

will grade last submission from group
members for alpha and project

