CIS 190: C/C++ Programming

Outline

Header Protection
~unctions in C++

Procedural Programming vs OOP
Classes

— Access

— Constructors

Headers in C++

* done same way asin C

* including user “.h” files:
#include “userFile.h”

* including C++ libraries
#include <iostream>

An example

typedef struct bar{
int a;
} BAR;

bar.h

#include “bar.h”

typedef struct foo{
BAR x;
char y;

} FOO;

foo.h

#include “bar.h”
#include “foo.h”

int main()

{
BAR 1i;
FOO j;
/* ... */

return 0;

main.c

An example

typedef struct bar{
int a;
} BAR;

bar.h

#include “bar.h”

typedef struct foo{
BAR x;
char y;

} FOO;

foo.h

#include “bar.h”
#include “foo.h”

int main()
{
BAR 1i;
FOO j;
/* ... */

return 0;

main.c

when we try
to compile
this...

An example

typedef struct bar{ #include “bar.h”
int a; #include “foo.h”

} BAR;

when we try
| | to compile
int main() .

bar.h { this...

BAR 1i;

In file

bar.h:1
In file
bar.h:1
In file

bar.h:3
In file
bar.h:3

included from foo.h:1:0,
from main.c:2:

:16: error: redefinition of 'struct bar'

included from main.c:1:0:

:16: note: originally defined here

included from foo.h:1:0,
from main.c:2:

:3: error: conflicting types for 'BAR'

included from main.c:1:0:

:3: note: previous declaration of 'BAR' was here

What the compiler is “seeing”

typedef struct bar{
int a;
} BAR;

bar.h

typedef struct bar{
int a;
} BAR;

typedef struct foo{
BAR x;
char y;

} FOO;

foo.h

#include
“bar.h”

typedef struct bar{
int a;
} BAR;

typedef struct bar{
int a;
} BAR;

typedef struct foof
BAR x;
char y;

} FOO;

int main() {

BAR 1i;
FOO 7j;
/* ... *x/
return 0O;

main.c

>

#include
“bar.h”

#include
“foo.h”

What the compiler is “seeing”

typedef struct bar{
int a;
} BAR;

bar.h

typedef struct bar{
int a;
} BAR;

typedef struct foo{
BAR x;
char y;

} FOO;

foo.h

#include
“bar.h”

typedef struct @
#include

int a;
} BAR;

typedef struc
int a;
} BAR;

“bar.h”
S
|

#include

typedef struct foof{ >'“foo,h"

BAR x;
char y;
} FOO;

int main() {
BAR 1i;

FOO j;
/* ... *x/
return 0O;

main.c

Header Protection

e we want to have the definition of
the BAR struct in both:

— foo.h
— main.c

* easiest way to solve this problem is through
the use of header guards

Header Guards

* in each “.h” file, use the following:

#ifndef BAR H if not (previously) defined
##define BAR H then define

[CONTENTS OF .H FILE GO HERE]

#tendif /* BAR H */ stop the “if” at this
point (end of the file)

A fixed example

typedef struct
int a;
} BAR;

bar.h

bar{

#include “bar.h”

typedef struct foo{
BAR x;
char y;

} FOO;

foo.h

#include “bar.h”
#include “foo.h”

int main()
{
BAR 1i;
FOO j;
/* ... */

return 0;

main.c

A fixed example

#ifndef BAR H
#define BAR H

typedef struct bar{
int a;
} BAR;

#endif /*BAR H*/

bar.h

#ifndef FOO H
#define FOO H

#include “bar.h”
typedef struct foo{
BAR x;
char y;
} FOO;
#endif /*FOO_H*/

foo.h

#include “bar.h”
#include “foo.h”

int main()
{
BAR 1i;
FOO j;
/* ... */

return 0;

main.c

Outline

Header Protection

Functions in C++

Procedural Programming vs OOP
Classes

— Access

— Constructors

Functions in C++

e very similar to functions in C
— variable scope remains the same

— can still pass things by value, or by reference
» implicit (arrays) or explicit (pointers)

e afew differences from functions in C

— no need to pass array length (just use empty
brackets)

void PrintArray (int arr []);

Using const in C++ functions

 when used on pass-by-value

int SquareNum (int x) {

return (x * x);

}

int SquareNum (const int x) {

return (x * x);

Using const in C++ functions

 when used on pass-by-value

* no real difference; kind of pointless

— changes to pass-by-value variables don’t last
beyond the scope of the function

e conventionally: not “wrong,” but not done

Using const in C++ functions

 when used on pass-by-reference

void SquareNum (int *x) {
(*x) = (*x) * (*x); /* fine */

}

void SquareNum (const int *x) ({
(*x) = (*x) * (*x); /* error */

}

Using const in C++ functions

 when you compile the “const” version:

void SquareNum (const int *x) ({
(*x) = (*x) * (*x); /* error */

}

error: assignment of read-only
location '*x'

Using const in C++ functions

 when used on pass-by-reference

* huge difference

— prevents changes to variables, even when they are

passed in by reference

e conventionally: use for user-defined types

(structs, etc.) but don’t use for simp
types (int, double, char) except may

e built-in

D€ drrays

Outline

Header Protection

~unctions in C++

Procedural Programming vs OOP
Classes

— Access

— Constructors

Procedural Programming

* up until now, everything we’ve been doing has
been procedural programming

e code is divided into multiple procedures

— procedures operate on data (structures), when
given correct number and type of arguments

e examples: PrintTrain(), ReadSingerFile(),
DestroylList(), ProcessEvents(), etc.

Object-Oriented Programming

now that we’re using C++, we can start taking
advantage of object-oriented programming

code and data are combined into a single
entity called a class

— each instance of a given class is an object of that
class type

OOP is more modular, and more transparent

Outline

Header Protection

~unctions in C++

Procedural Programming vs OOP
Classes

— Access
— Constructors

Example: Date Struct
* implementing a date structure in C:

typedef struct date {
int month;
int day;
int year;

} DATE;

Example: Date Class
* implementing a date class in C++:

class Date {
public:
int m month;
int m day;
int m year;

};

Functions in Classes

* |let’s add a function to the class that will print

out the name of the month, given the number
class Date {

public:
void OutputMonth() ;
int m month;
int m day;

int m year;

OutputMonth

void OutputMonth() ;

* nothing is passed in to the function because it
only needs to look at the m _month variable

— which is a member variable of the Date class
— just like OutputMonth()

OutputMonth

void Date: :OutputMonth () {
switch (m month) ({
case 1l: cout << “January”; break;
case 2: cout << “February”; break;
case 3: cout << “March”; break;
case 4: cout << “April”; break;
/* etc */
case 1ll: cout << “November”; break;
case 12: cout << “December”; break;
default:
cout << “Error in Date: :OutputMonth()”;

OutputMonth
voidutputMonth () {

. month) {
include class name; “

cout << “January”; break;
more than one class

X P _ cout << “February”; break;
can ave a function cout << “March”: break:
with the same name |oout << “April”; break;

/* etc */
case 1ll: cout << “November”; break;
case 12: cout << “December”; break;
default:
cout << “Error in Date: :OutputMonth()”;

OutputMonth
void DtputMonth() {

this double colon is called
the scope resolution
operator, and associates
the member function
OutputMonth() with the

‘January”; break;
‘February”; break;
‘March”; break;
‘April”; break;

class Date “November”: break;
case 12: cout << “December”; break;
default:

cout << “Error in Date: :OutputMonth()”;

OutputMonth

void Date : . Quas onth () {
switch @ {

we can directly access m_month

; break;

.) 7"’ ; break;
because it is a membfzr variable of break :
the Date class, to which the break :

OutputMonth() function belongs

case 1ll: cout << “November”; break;
case 12: cout << “December”; break;
default:

cout << “Error in Date: :OutputMonth()”;

Using the Date class

Date today, birthday;
cout << “Please enter dates as DD MM YYYY” << endl;

// get today’s date
cout << “Please enter today’s date: ”;
cin >> today.m day >> today.m month >> today.m year;

// get user’s birthday

cout << "“Please enter your birthday: ”;

cin >> birthday.m day >> birthday.m month
>> birthday.m year;

//echo output
cout << "“"Today’s date is “ << today.OutputMonth ()
<< today.m day << %, " << today.m year << endl;
cout << “Your birthday is “ << birthday.OutputMonth ()
<< birthday.m day << %, " << birthday.m year << endl;

Jsing the Date class

variables today and dates as DD MM YYYY” << endl;
birthday are instances of

the class Date today’s date: ”;

today.m month >> today.m year;
they are both objects of

type Date your birthday: ”;
cin >> birthday.m day >> birthday.m month
>> birthday.m year;

//echo output
cout << "“"Today’s date is “ << today.OutputMonth ()
<< today.m day << %, " << today.m year << endl;
cout << “Your birthday is “ << birthday.OutputMonth ()
<< birthday.m day << %, " << birthday.m year << endl;

Using the Date class

Date today, birthday;
cout << “Please enter dates as DD MM YYYY” << endl;

// get today’s date

cout < Prease w=Rter today’s date: ”;
cin >k today.m day)J> today.m month >> today.m year;

when we are not inside the class (as we
were in the OutputMonth() function) we [~
must use the dot operator to access Pnth
today’s member variables

//echo output
cout << "“"Today’s date is “ << today.OutputMonth ()
<< today.m day << %, " << today.m year << endl;
cout << “Your birthday is “ << birthday.OutputMonth ()
<< birthday.m day << %, " << birthday.m year << endl;

Using the Date class

Date today, birthday;
cout << “Please enter dates as DD MM YYYY” << endl;
// get today’s date

cout << “Please enter
cin >> today.m day >>

we also use the dot operator to

call the member function

// get user’s birthda)] QutputMonth() on the Date

cout << "Please enter| jhiact today; again, note that we

cin >> birthday.m day .
>> birthday.m yeaj dO NOt need to pass in the

member variable m_month

cout << "“Today’s date is “ <€ today.OutputMonth ()
__= (" == = dl

<< today.m day << %, © ;
cout << “Your birthday is “ << birthday.OutputMonth ()
<< birthday.m day << %, " << birthday.m year << endl;

//echo output

Outline

Header Protection

~unctions in C++

Procedural Programming vs OOP

Classes
— Access
— Constructors

Public, Private, Protected

* in our definition of the Date class, everything
was public — this is not good practice!

* we have three different options for
access specifiers, each with their own role:
— public
— private
— protected

Example: Public, Private, Protected

class Date {
public:

int m month;
private:

int m day;
protected:

int m year;

};

Using Public, Private, Protected

* public

— anything that has access to the birthday object
also has access to birthday.m month, etc.

* private

—m_day can only be accessed by member functions
of the Date class; cannot be accessed in main(), etc.

* protected

—m_year can by accessed by member functions of
the Date class and by member functions of any
derived classes (we’ll cover this later)

Access specifiers for Date class

class Date {
public:

void OutputMonth() ;
private:

int m month;

int m day;

int m year;

};

New member functions

* now that m_month, m_day, and m_year are
private, how do we give them values, or
retrieve those values?

e write public member functions to provide
indirect, controlled access for the user

New member functions

* qaccessor functions:
— allow retrieval of private data members
— GetMonth (), GetDay (), GetYear ()
* mutator functions:
— allow changing the value of a private data member
— SetMonth (), SetDay (), SetYear ()
e service functions:

— provide support for the operations
— OutputMonth ()

Access specifiers for Date class

class Date {
public:
void OutputMonth() ;
int GetMonth() ;
int GetDay()
int GetYear();
void SetMonth (int m) ;
void SetDay (int d);
void SetYear (int y);
private:
int m month;
int m day;
int m year;

};

Outline

Header Protection

~unctions in C++

Procedural Programming vs OOP
Classes

— Access
— Constructors

Constructors

e special member functions used to create
(or “construct”) new objects

e automatically called when an object is created

e initializes the values of all data members

Date class Constructors

class Date {
public:

void OutputMonth() ;

Date (int m, int d, int y);
private:

int m month;

int m day;

int m year;

};

Date class Constructors

class Date {
public:
void OutputMonth() ;

int d, int y);
exact same

private gme asthe
int 1class

int m day;

int m year;

};

Date class Constructors

class Date {
public:
void OutputMonth() ;

int m, int d, int y);
no return

type, not
even void month;

P!

int m day;
int m year;

};

Constructor Definition

Date: :Date (int m, int d, int y)
{

m month = m;
m day = d;
m year = y;

}

Constructor Definition

* by using classes with private members and
public functions, we can control almost
everything

e can prevent “incorrect” values from being
accepted by the constructor

Constructor Definition

Date: :Date (int m, int d, int y)
{

if (m > 0 && m <= 12) {
m month = m; }

else { m month = 1; }

if (d > 0 && d <= 31) {
m day = d; }

else { m day = 1; }

if (y > 0 && y <= 2100) {
m year = y; }

else { m year = 1; }

Overloading

* we can define multiple versions of the
constructor — we can overload the function

e different constructors for:
— when all values are known

— when no values are known

— when some subset of values are known

All Known Values

* have the constructor set user-supplied values

Date: :Date (int m, int d, int y)
{

m month = m;

m day = d;

m year = y;

All Known Values

* have the constructor set user-supplied values

{

invoked when
m month = m; |constructoris called
with all arguments

m day = d;

m year = y;

No Known Values

e have the constructor set all default values

Date: :Date ()
{

m month = 1;
m day = 1;
m year = 1

}

No Known Values

e have the constructor set all default values

Date: :Date®.
invoked when

{ constructor is called
m month = 1 ;Withnoarguments

m day = 1;

m year = 1

Some Known Values

* have the constructor set some default values

Date: :Date (int m, int d)
{

m month = m;

m day = d;

m year = 1

Some Known Values

* have the constructor set some default values

Date: :Date

{ invoked when
m month = m; constructor is called
B with some arguments

m day = d;

m year = 1

Overloaded Date Constructor

* so far we have the following constructors:

Date::Date (int m, int 4, int y);
Date: :Date (int m, int d4d);
Date: :Date () ;

* would the following be a valid constructor?
Date: :Date (int m, int vy);

Avoiding Multiple Constructors

* defining multiple constructors for different
known values is a lot of code duplication

* we can avoid this by setting default
parameters in our constructors

Default Parameters

* in the function prototype only, provide default
values you want the constructor to use

Date (int m = 3, int d = 6,
2014) ;

int y

Default Parameters

* in the function definition literally
nothing changes

Date::Date (int m, int d, int y) {
m month = m;
m day = d;

m year = y;

}

Using Default Parameters

* the following are all valid declarations:

Date graduation(5,19,2014);
Date today;

Date halloween (10,25);

Date july(4) ;

Using Default Parameters

* the following are all valid declarations:

Date graduation(5,19,2014);

Date today;

Date halloween (10,25);

Date july(4) ;

// graduation:
// today:

// halloween:
// july:

5/19/2014
3/6/2014
10/25/2014
4/6/2014

Using Default Parameters

* the following are all valid declarations:

Date graduation(5,19,2014) ;
Date

Date hallows
Date july (4]

NOTE: when you

call a constructor
with no arguments,
you do not give it
// graduatidempty parentheses
// today: — 3/6/2014
// halloween: 10/25/2014
// july: 4/6/2014

Default Constructors

* default constructor is provided by compiler

— will handle declarations of Date instances

* but, if you create any other constructor, the
compiler doesn’t provide a default constructor

— so make sure you always create a default
constructor too, even if its body is just empty

