
CIS 190: C/C++ Programming

Introduction to C++

Outline

• Files & Compiling in C++

• Variables in C++

– string

– bool

• Input and Output in C++

– cin and cout

– file streams

Files in C++

• hello_world.c

– becomes

• hello_world.cpp

• hello_world.h

– stays

• hello_world.h

Compiling in C++

• instead of gcc use g++

• you can still use the same flags:

-Wall for all warnings

-c for denoting separate compilation

-o for naming an executable

-g for allowing use of a debugger

• and any other flags you used with gcc

Outline

• Files & Compiling in C++

• Variables in C++

– string

– bool

• Input and Output in C++

– cin and cout

– file streams

Variables in C++

• leniency

– variables can be declared anywhere

– might still want them at the top

• new variables

– string

– bool

Variables in C++

• #defines still work

– but we can use const instead

• comments can be
/* contained */

or
//no code on same line after

const/#define

• #define replaces with value at compile time

 #define PI 3.14159265358979

• const defines variable as unable to be changed

 const double PI = 3.14159265358979;

• use in code is same for both
 area = PI * (radius * radius);

Details about const

const double PI = 3.14159265358979;

• explicitly specify actual type

• a variable – so can be examined by debugger

• const should not be global

– very very rarely

string

• requires header file: #include <string>

advantages over C-style strings:

• length of string is not fixed

– or required to be dynamically allocated

• can use “normal” operations

• lots of helper functions

• not an array of characters

Creating and Initializing a string

• create and initialize as empty

string name0;

• create and initialize with character sequence
string name1 (“Alice”);

string name2 = “Bob”;

• create and initialize as copy of another string
string name3 (name1);

string name4 = name2;

“Normal” string Operations

• determine length of string
name1.size();

• determine if string is empty
name2.empty();

• can compare for equality
if (name1 == name2) { ... }

More string Comparisons

• can also use the other comparison operators:

if (name1 != name2) { ... }

• alphabetically (but uses ASCII values)
if (name3 < name 4) { ... }

if (name3 > name 4) { ... }

• and can concatenate using the ‘+’ operator

name0 = name1 + “ “ + name2;

Looking at Sub-Strings

• can access one character like C-style strings
name1[0] = ‘a’;

• can access a sub-string
name1.substr(2,4);

• “ice”
name2.substr(0,1);

• “Bo”

bool

• create and initialize
bool boolVar1 = true;

bool boolVar2 (false);

• can compare (and set) to true or false

• but evaluates to 0 or 1

Outline

• Files & Compiling in C++

• Variables in C++

– string

– bool

• Input and Output in C++

– cin and cout

– file streams

Working with Input/Output in C++

• at top of each file that uses input/output

using namespace std;

• to use streams to interact with user/console,
must have #include <iostream>

• to use streams to interact with files, must
have #include <fstream>

Input/Output in C

• #include <stdio.h>

• printf(“test: %d\n”, x);

• scanf(“%d”, &x);

Streams in C++

• #include <stdio.h>

– #include <iostream>

• printf(“test: %d\n”, x);

– cout << “test: ” << x << endl;

• scanf(“%d”, &x);

– cin >> x;

More about C++ Streams

• in order to use C++ streams as shown

– at top of each file you must have

using namespace std;

– otherwise you must use

std::cin, std::cout, std::endl

• in addition to cin and cout, we have cerr

– instead of fprintf(stderr, “error!”);

Reading In Files in C

• FILE *ifp;

• ifp = fopen(“testFile.txt”, “r”);

• if (ifp == NULL) { /* exit */ }

• read specified in call to fopen()

Reading In Files in C++

• FILE *ifp;

– ifstream inStream;

• ifp = fopen(“testFile.txt”, “r”);

– inStream.open(“testFile.txt”);

• if (ifp == NULL) { /* exit */ }

– if (!inStream) { /* exit */ }

• read specified by variable type

– ifstream for reading

Writing To Files in C

• FILE *ofp;

• ofp = fopen(“testFile.txt”, “w”);

• if (ofp == NULL) { /* exit */ }

• write specified in call to fopen()

Writing To Files in C++

• FILE *ofp;

– ofstream outStream;

• ofp = fopen(“testFile.txt”, “w”);

– inStream.open(“testFile.txt”);

• if (ofp == NULL) { /* exit */ }

– if (!outStream) { /* exit */ }

• write specified by variable type

– ofstream for writing

Using Streams in C++

• must have #include <fstream>

• once file is correctly opened, use inStream
and outStream the same as cin and cout

inStream >> firstName >> lastName;

outStream << firstName << “ “

 << lastName << endl;

Advantages of Streams

• does not use placeholders (%d, %s, etc.)

– no placeholder type-matching errors

• can split onto multiple lines

• precision with printing can be easier

– once set using setf(), the effect remains until
changed with another call to setf()

Finding EOF with ifstream – Way 1

• use cin’s boolean return to your advantage

while (inStream >> x)

{

 // do stuff with x

}

Finding EOF with ifstream – Way 2

• use a “priming read”

inStream >> x;

while(!inStream.eof())

{

 // do stuff with x

 // read in next x

 inStream >> x;

}

The >> Operator

• returns a boolean for (un)successful read

• just like scanf and fscanf:

– skips leading whitespace

– stops at the next whitespace
(without reading it in)

hello_world.cpp

#include <iostream>

using namespace std;

int main() {

 cout << “Hello world!”

 << endl;

 return 0;

}

Next Few Classes

• vectors

• header protection

• classes

• operator overloading

• new/delete

• and more!

Homework 4B

• due this coming Wednesday

• any questions?

