CIS 190: C/C++ Programming

Introduction to C++

Outline

* Files & Compiling in C++
* Variables in C++

— string

— bool
* |[nput and Output in C++

— cin and cout

— file streams

Files in C++

hellq;world.c

— becomes

hello world.cpp

hello_world.h
— stays
hellq;world.h

Compiling in C++

* instead of gcc use g++

e you can still use the same flags:
-Wall for all warnings

-C for denoting separate compilation
-0 for naming an executable
-g for allowing use of a debugger

* and any other flags you used with gcc

Outline

* Files & Compiling in C++
* Variables in C++

— string

— bool
* |[nput and Output in C++

— cin and cout

— file streams

Variables in C++

* |leniency
— variables can be declared anywhere
— might still want them at the top

e new variables
— string
— bool

Variables in C++

e Hdefines still work

— but we can use const instead

e comments can be
/* contained */
or
//no code on same line after

const/#define

 #define replaces with value at compile time
#define PI 3.14159265358979

 const defines variable as unable to be changed
const double PI = 3.14159265358979;

e use in code is same for both

area = PI * (radius * radius);

Details about const

const double PI = 3.14159265358979;

* explicitly specify actual type
e avariable —so can be examined by debugger

e const should not be global

— very very rarely

string

* requires header file: #include <string>

advantages over C-style strings:

* |length of string is not fixed
— or required to be dynamically allocated

|II

e can use “normal” operations
* |ots of helper functions

* not an array of characters

Creating and Initializing a string

e create and initialize as empty

string nameO;

* create and initialize with character sequence
string namel (“Alice”);
\\Bobll;

string name?2

e create and initialize as copy of another string
string name3 (namel);

string name4 = nameZ2;

III

“Normal” string Operations

e determine length of string

namel.size() ;

e determine if string is empty
name2 .empty () ;

e can compare for equality
if (namel == name2) { ... }

More string Comparisons

* can also use the other comparison operators:
if (namel '= name2) { ... }

* alphabetically (but uses ASCII values)
if (name3 < name 4) { ... }

if (name3 > name 4) { ... }

e and can concatenate using the ‘+’ operator

name0 = namel + “ Y 4+ name?2;

Looking at Sub-Strings

* can access one character like C-style strings
namel[0] = ‘a’;

* can access a sub-string
namel . substr (2,4) ;

(i 7

* |Ce
name?2 .substr (0,1) ;

° IIBO”

bool

e create and initialize
bool boolVarl = true;
bool boolVar2 (false) ;

e can compare (and set) to true or false

e but evaluatestoOor1

Outline

* Files & Compiling in C++
* Variables in C++

— string

— bool
* |[nput and Output in C++

— cin and cout
— file streams

Working with Input/Output in C++

* at top of each file that uses input/output
using namespace std;

* to use streams to interact with user/console,
must have #include <iostream>

* to use streams to interact with files, must
have #include <fstream>

Input/Output in C

e #include <stdio.h>

* printf(“test: %d\n”, x);

e scanf (“"3d”, &x);

Streams in C++

e H#inelude <stdioc- h>

— $#include <iostream>

° - A\ o O A\ oa 7/ ,e) .
° \qll J I

— cout <K<K “test: ” <K<K x << endl;

 seanf{(“sdL—&3x%)+

— cin >> XxX;

More about C++ Streams

e in order to use C++ streams as shown

— at top of each file you must have
using namespace std;

— otherwise you must use
std: :cin, std::cout, std::endl

* in addition to ¢in and cout, we have cerr

—instead of fprintf (stderr, “error!”);

Reading In Files in C

FILE *ifp;
ifp = fopen(“testFile.txt”, “r”);

if (ifp == NULL) { /* exit */ }

read specified in call to fopen ()

Reading In Files in C++

F—I—LE—*—:i.—EpT'
— 1fstream inStream;

-— \\ - 144 \\ 1 {4 °
e

— inStream.open(“testFile.txt”) ;

if (ifp == NULL) { /* exit */

— if ('inStream) { /* exit */ }

read specified by variable type
— ifstream forreading

Writing To Files in C

FILE *ofp;
ofp = fopen(“testFile.txt”, “w”);

if (ofp == NULL) { /* exit */ }

write specified in call to fopen ()

Writing To Files in C++

F—I—LE—*G%pT'
— oOfstream outStream;

-— \\ - 144 \\ 1 {4 °
s Mepl} o

— inStream.open(“testFile.txt”) ;

:'I.—F(—G—fp————NU—L—L—)' — { [/* eXit *[/

— if ('outStream) { /* exit */ }

write specified by variable type
— ofstream for writing

Using Streams in C++

* must have #include <fstream>

* once file is correctly opened, use inStream
and outStream the same as cin and cout

inStream >> firstName >> lastName;

outStream << firstName <K “ "
<< lastName << endl;

Advantages of Streams

* does not use placeholders (%d, $s, etc.)

— no placeholder type-matching errors
e can split onto multiple lines

e precision with printing can be easier

— once set using setf (), the effect remains until
changed with another call to setf ()

Finding EOF with ifstream — Way 1

* use cin’s boolean return to your advantage

while (inStream >> x)

{
// do stuff with x

}

Finding EOF with ifstream — Way 2
* use a “priming read”

inStream >> Xx;

while('inStream.eocf ())

{
// do stuff with x

// read in next x
inStream >> x;

}

The >> Operator

* returns a boolean for (un)successful read

* just like scanf and fscanf:
—skips leading whitespace

—stops at the next whitespace
(without reading it in)

hello world.cpp

#include <iostream>
using namespace std;

int main () {

cout << “Hello world!”
<< endl;

return 0;

Next Few Classes

vectors

header protection
classes

operator overloading
new/delete

and more!

Homework 4B

e due this coming Wednesday

* any questions?

