
CIS 190: C/C++ Programming

Assorted Topics
(and More on Pointers)

Outline

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

Input and Output Streams

• printf

– stdout

– output written to the terminal

• scanf

– stdin

– input read in from user

• redirection

– executable < input.txt > output.txt

FILE I/O Basics

• read in from and print out to files

• use a file pointer (FILE*)

FILE * fopen (<filename>, <mode>)

• <filename> is a string

• <mode> is single-character string

FILE I/O Reading and Writing

 ifp = fopen(“input.txt”, “r”);

• opens input.txt for reading

– file must already exist

 ofp = fopen(“output.txt”, “w”);

• opens output.txt for writing

– if file exists, it will be overwritten

File I/O Opening and Closing

• before using file pointers, make sure they’re
valid

• if the file pointer is NULL, there was an error

– need to deal with it – exit, re-prompt, etc.

• after you’re done with a file, close it
fclose(ifp);

Using File Pointers

• fprintf
fprintf(ofp, “print: %s\n”, textStr);

– output written to where ofp points

• fscanf
fscanf(ifp, “%s %d”, inputStr,

 &inputInt);

– input read in from where ifp points

Using stderr with fprintf

• three standard streams: stdin, stdout, stderr

• printing to stderr prints to the console

– even when using redirection!

if (filePointer == NULL)

{

 fprintf(stderr, “The file %s

 could not be opened.\n”, fileName);

 exit(-1); /* requires <stdlib.h> */

}

Reaching EOF with fscanf

• knowing when to stop reading in from a file

• EOF = End Of File (defined in a library)

while (fscanf(ifp, “%s”, str) != EOF)

{

 /* do things */

}

/* while loop exited, EOF reached */

Outline

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

Command Line Arguments

• parameters to main() function
int main(int argc, char **argv)

• int argc – number of arguments

– including name of executable

• char **argv – array of argument strings

– argv[0] is string containing name of executable

– argv[1] is first argument, etc.

Using argc
• before using command line arguments, double

check that they exist using argc

• check the value of argc
– if it’s not correct, exit and prompt the correct args:

if (argc != NUM_ARGS) {

fprintf(stderr,

 “Incorrect number of arguments.\n”);

fprintf(stderr,

 “Expected <exec> <input filename>.\n”);

exit(-1); }

Using argv

• char **argv is an array of strings

– executable is argv[0]

– arguments start at argv[1]

• to convert from a string to an integer:
intArg = atoi(argv[INT_ARG]);

– atoi() converts alpha to int

• need to #include <stdlib.h>

Outline

• File I/O

• Command Line Arguments

• Random Numbers

• Pointers Again

Random Numbers

• useful for many things:
– cryptography, games of chance & probability,

procedural generation, statistical sampling

• generated “random numbers” are PSUEDO random

• “Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.” – John von Neumann

Seeding for Randomness

• you can seed the random number generator

• same seed means same “random” numbers

– good for testing

void srand (unsigned int seed);

Seeding with Time

• can also give a “unique” seed with time()

– need to #include <time.h> library

int timeSeed = (int) time(0);

srand(timeSeed);

• NOTE: if you want to use the time() function, do
not have a variable called time
error: called object ‘time’ is not a function

Generating Random Numbers

int rand (void);

• returns an integer between 0 and RAND_MAX

• use % to get the range you want:
/* 0 to MAX - 1 */

int random = rand() % MAX;

/* returns MIN to MAX, inclusive */

int random = rand() % (MAX – MIN + 1) + MIN;

Outline

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

Why Pointers Again?

• important programming concept

• understand what’s going on “inside”

• other languages use pointers heavily

– you just don’t see them!

• but pointers can be difficult to understand

– abstract concept

– unlike what you’ve learned before

Memory Basics – Regular Variables

• all variables have two parts:

– value

5

Memory Basics – Regular Variables

• all variables have two parts:

– value

– address where value is stored

0xFFC0 5

Memory Basics – Regular Variables

• all variables have two parts:

– value

– address where value is stored

• x’s value is 5

0xFFC0 5

value

Memory Basics – Regular Variables

• all variables have two parts:

– value

– address where value is stored

• x’s value is 5

• x’s address is 0xFFC0

0xFFC0 5

value address

Memory Basics – Regular Variables

• so the code to declare this is:
int x = 5;

0xFFC0 5

value address

Memory Basics – Regular Variables

• we can also declare a pointer:
int x = 5;

int *ptr;

0xFFC0 5

value address

Memory Basics – Regular Variables

• and set it equal to the address of x:

int x = 5;

int *ptr;

ptr = &x;

0xFFC0 5

value address

Memory Basics – Regular Variables

• ptr = &x

0xFFC0 5

value address

Memory Basics – Regular Variables

• ptr = &x

• *ptr = x

 0xFFC0 5

value address

Memory Basics – Regular Variables

• ptr points to the address where x is stored

• *ptr gives us the value of x

– (dereferencing ptr)

 0xFFC0 5

value address

Memory Basics – Pointer Variables

• but what about the variable ptr?

– does it have a value and address too?

0xFFC0 5

value address

Memory Basics – Pointer Variables

• but what about the variable ptr?

– does it have a value and address too?

• YES!!!

 0xFFC0 5

value address

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – so it’s 0xFFC0

0xFFC0 5

value address

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – so it’s 0xFFC0

0xFFC0 5

value address

0xFFC0

value

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – so it’s 0xFFC0

• but what about its address?

0xFFC0 5

value address

0xFFC0

value

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – so it’s 0xFFC0

• but what about its address?

– its address is &ptr

0xFFC0 5

value address

0xFFC0

value

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – so it’s 0xFFC0

• but what about its address?

– its address is &ptr

0xFFC0 5

value address

0xFFC4 0xFFC0

value address

Memory Basics – Pointer Variables

• if you want, you can think of value and
address for pointers as this instead…

0xFFC0 5

value address

0xFFC4 0xFFC0

value address

Memory Basics – Pointer Variables

• address where it’s stored in memory

0xFFC0 5

value address

0xFFC4 0xFFC0

value address
where it’s
stored in
memory

Memory Basics – Pointer Variables

• address where it’s stored in memory

• value where it points to in memory

0xFFC0 5

value address

0xFFC4 0xFFC0

value
where it

points to in
memory

address
where it’s
stored in
memory

Memory Basics – “Owning” Memory

• each process gets its own memory chunk,
or address space

Stack

Heap

Global/static vars

Code

0x000000

0xFFFFFFF

4 GB
address
space

Function calls,
locals

Dynamically
allocated
memory

“data segment”

“code segment”

Memory Basics – “Owning” Memory

• you can think of memory as being “owned” by:
– the OS

• most of the memory the computer has

– the process
• a chunk of memory given by the OS – about 4 GB

– the program
• memory (on the stack) given to it by the process

– you
• when you dynamically allocate memory in the program

(memory given to you by the process)

Memory Basics – “Owning” Memory

• the Operating System has a very large amount
of memory available to it

the OS the OS the OS the OS

Memory Basics – “Owning” Memory

• when the process begins, the Operating
System gives it a chunk of that memory

the OS the OS

the OS Stack

Heap

Global/static vars

Code

Memory Basics – “Owning” Memory

• when the process begins, the Operating
System gives it a chunk of that memory

Stack

Heap

Global/static vars

Code

Memory Basics – “Owning” Memory

• when the process begins, the Operating
System gives it a chunk of that memory

Stack

Heap

Global/static vars

Code

Memory Basics – “Owning” Memory

• within that chunk of memory, only the stack
and the heap are available to you and
 the program

 Stack

Heap

Global/static vars

Code

Memory Basics – “Owning” Memory

• within that chunk of memory, only the stack
and the heap are available to you and
 the program

 Stack

Heap

Memory Basics – “Owning” Memory

• within that chunk of memory, only the stack
and the heap are available to you and
 the program

Stack

Heap

Memory Basics – “Owning” Memory

• some parts of the stack are given to
the program for variables

Stack

Heap

Memory Basics – “Owning” Memory

• some parts of the stack are given to
the program for variables

Stack

Heap

program variables

Memory Basics – “Owning” Memory

• and when a function is called, the program is
given more space on the stack for the return
address and in-function
variables

 Stack

Heap

program variables

function return address & variables

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

program variables

function return address & variables

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

CAR* train;

char* userStr;

int* intArray;

Stack

Heap

program variables

function return address & variables

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

CAR* train;

char* userStr;

int* intArray;

Stack

Heap

program variables

function return address & variables

intArray

train

userStr

?

?

?

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

intArray = (int*) malloc(…)

program variables

function return address & variables

intArray

train

userStr

?

?

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

?

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

(also program
variables)

Memory Basics – “Owning” Memory

• don’t forget – those pointers are program
variables, so where they are stored is actually
on the stack with the rest
of the program variables!

– they are program variables
because they are declared
in the program’s code

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

(also program
variables)

Memory Basics – “Returning” Memory

• but how does the process get any of that
memory back?

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

Stack

Heap

program variables

function return address & variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

return fxnAnswer;

Stack

Heap

program variables

function return address & variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

return fxnAnswer;

Stack

Heap

program variables

function return address & variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

Stack

Heap

program variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

Stack

Heap

program variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

free(intArray);

Stack

Heap

program variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

free(intArray);

Stack

Heap

program variables

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

intArray

userStr

train

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

Stack

Heap

program variables

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

userStr

train

intArray

(also program
variables)

Memory Basics – Memory Errors

• but simply using free() doesn’t change
anything about the intArray variable

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• but simply using free() doesn’t change
anything about the intArray variable

• it still points to that space
in memory

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• but simply using free() doesn’t change
anything about the intArray variable

• it still points to that space
in memory

• it’s still stored on the stack
with the rest of the variables

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

– points to memory that has been freed

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

– points to memory that has been freed

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

– points to memory that has been freed

– memory which is now back
to being owned by
the process, not you Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

• to prevent segfaults,
good programming practices
dictate that after free()ing,
we set intArray to
be equal to

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

• to prevent segfaults,
good programming practices
dictate that after free()ing,
we set intArray to
be equal to

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…) NULL

(also program
variables)

Memory Basics – Memory Errors

• NOTE: if you try to free a NULL pointer, no
action occurs (and it doesn’t segfault!)

• much safer than accidentally
double free()ing memory

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

(also program
variables)

Memory Basics – Running Out

• the process is capable of giving memory to
you and the program as many times as
necessary (including having
that memory returned), as
long as it doesn’t run out of
memory to hand out

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

intArray = (int*) malloc
(sizeof(int) * HUGE_NUM)

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

intArray = (int*) malloc
(sizeof(int) * HUGE_NUM)

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

intArray = (int*) malloc
(sizeof(int) * HUGE_NUM)

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

• malloc will return NULL

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

• malloc will return NULL

• that’s why you must check
that intArray != NULL
before you use it

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

Quick Note on Segfaults

• segfaults are not consistent (unfortunately)

• even if something should result in a segfault,
it might not (and then occasionally it will)
– this doesn’t mean there isn’t an error!

– C is trying to be “nice” to you when it can

• you have to be extra-super-duper-careful
with your memory management!!!

Memory and Functions

• how do different types of variables get passed
to and returned from functions?

• passing by value

• passing by reference

– implicit: arrays, strings

– explicit: pointers

Memory and Functions

• some simple examples:
int Add(int x, int y);

 int answer = Add(1, 2);

void PrintMenu(void);

 PrintMenu();

int GetAsciiValue(char c);

 int ascii = GetAsciiValue (‘m’);

• all passed by value

Memory and Functions

• passing arrays to functions

void TimesTwo(int array[], int size);

int arr [ARR_SIZE];

/* set values of arr */

TimesTwo(arr, ARR_SIZE);

• arrays of any type are passed by reference
– changes made in-function persist

Memory and Functions

• passing arrays to functions

void TimesTwo(int array[], int size);

void TimesTwo(int * array, int size);

• both of these behave the same way

– they either take a pointer to:

• the beginning of an array

• an int that we (can) treat like an array

Memory and Functions

• passing strings to functions

void PrintName(char name [NAME_SIZE]);

char myName [NAME_SIZE] = “Alice”;

PrintName(myName);

• strings are arrays (of characters)

– implicitly passed by reference

Memory and Functions

• passing pointers to int to functions

void Square(int *n);

int x = 9;

Square(&x);

• pass address of an integer (in this case, x)

Memory and Functions

• passing int pointers to function

void Square(int *n);

int x = 9;

int *xPtr = &x;

Square(???);

• pass ???

Memory and Functions

• passing int pointers to function

void Square(int *n);

int x = 9;

int *xPtr = &x;

Square(xPtr);

• pass xPtr, which is an address to an integer (x)

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR temp;

 return &temp; }

• temp is on the stack – so what happens?

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR temp;

 return &temp; }

• temp is on the stack – so it will be returned to
the process when MakeCar() returns!

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR* temp;

 temp = (CAR*) malloc (sizeof(CAR));

 return temp; }

• temp is on the heap – so what happens?

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR* temp;

 temp = (CAR*) malloc (sizeof(CAR));

 return temp; }

• temp is on the heap – so it belongs to you and
will remain on the heap until you free() it

Homework 4A

• Karaoke

• File I/O

• command line arguments

• allocating memory

• no grade for Homework 4A

• turn in working code or -10 points for HW 4B

