CIS 190: C/C++ Programming

Lecture 2
Pointers and More

Separate Compilation

* to prevent the file containing main() from
getting too crowded and long

— function prototypes in their own file (functions.h)
— function definitions in their own file (functions.c)

 put #include “functions.h” at top of
any .c file using those functions

— note that we use quotes (“) instead of carats (<>)
* need to compile files separately

Compiling with multiple .c files

e for three files: main.c, functions.c, functions.h

— main.c and functions.c both have
#include “functions.h”

> gcec —¢ —Wall main.c
> gcec —c —-Wall functions.c
> gcc —Wall main.o functions.o

-0 main

Separate Compilation Mistakes

Don’t #include .c files
Don’t put #include in a .h file

Only #include those files whose function
prototypes are needed

getting the error: “undefined reference
to ‘functionName’”
— linker couldn’t find the function ‘functionName’

— 99% of the time, this is because ‘functionName’ was
spelled wrong somewhere

Structures

e collection of variables under one name
— variables can be of different types

struct cisClass

{
int classNum;
char room [20];
char title [30];

}

Using Structures

* to declare a structure of type cisClass:
struct cisClass ¢isl90;

e to access a variable inside, use dot notation:
cisl90.classNum = 190;
strcpy(cisl90.room, “Towne 309”);

printf (“class #: %d\n”,
cisl90.classNum) ;

* when using scanf:
scanf ("3d”, &(cisl90.classNum)) ;

typedefs

* typedef declares an alias for a type
typedef unsigned char uchar;

e can use it to simplify struct types:
typedef struct cisClass {
int classNum;
char room [20];
char title [30];
} CIS CLASS;

Arrays of Structures

e structures are variables, which means we can
make arrays of them:

CIS CLASS classes [4];

classNum classNum classNum classNum
room room room room
title title title title
0 1 2 3

* access like an array:
classes[0] .classNum =

190;

define

* symbolic constants — replaced at compile time
define NUM CLASSES 4

e use #fdefine to avoid “magic numbers”

— numbers used directly in code

e used the same way you would a variable
CIS CLASS classes [NUM CLASSES];

Pointers

“point” to locations in memory
int x 5;
int *xPtr = &x;

pointer must match the type of the variable
whose location in memory it points to

scanf uses pointers for ints, etc. because it needs
to know where to store the values it reads in

scanf (“3d”, &x);

Accessing data in pointers

& - ampersand; returns the address of a value
int x =5; /* x =5 %/

int *xPtr = &x; /* xPtr points to x */

e * - asterisk; dereferences a pointer to get to
its value
int y = *xPtr; /* y’s value is 5 */
x = 3; /* y is still 5 */
y = 2; /* x =3 andy =2 */

Visualization of pointers

variable

memory address

value

Visualization of pointers

int x = 5; /* x =5 %/

variable X

memory address | O0x/7/£96c

value D

Visualization of pointers

int x = 5; /* x =5 */
int *xPtr = &x; /* xPtr points to x */
variable X xPtr

memory address | O0x/7/£96c 0x7£960

value 5 Ox7f96cC

Visualization of pointers

5; /* x = 5 %/
int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

int x

variable X xPtr Y

memory address | Ox7£96c 0x7£f960 | 0x7£f95c

value 5 Ox7f96¢c 5

Visualization of pointers

int x = 5; /* x =5 %/

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

x = 3; /* y is still 5 */
variable X xPtr Y

memory address | Ox7£96c 0x7£f960 | 0x7£f95c

value 3 Ox7f96¢c 5

Visualization of pointers

int x = 5; /* x =5 %/

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

x = 3; /* y is still 5 */

y = 2; /* x =3 andy =2 */
variable X xPtr Y

memory address | Ox7£96c 0x7£f960 | 0x7£f95c

value 3 Ox7f96¢c 2

Pointer Assignments

* pointers can be assigned to one another:

int x =5; /*
int *xPtrl = &x; /*
int *xPtr2; /*
xPtr2 = xPtrl; /*

(*xPtr2) ++; /*
(*xPtrl) --; / *

x =5 %/

xPtrl points

to x */
uninitialized */

xPtr2 also points
to x */

X is now 6 */
x is 5 again */

Pointers and functions

pointers allow us to call-by-reference
— previously we could only call-by-value

passing by reference allows the variable to be changed
inside the function:

void AddOneByVal (int wvar) ({ var++; }
void AddOneByRef (int *wvar) { (*var)++; }

calling functions with pointers

int x = 5;

AddOneByVal(x); /* x 5 still */
AddOneByRef (&x); /* x = 6 now */

Pointers and functions

int x = 5;

printf (“x at start: $d\n”, x);
AddOneByVal (x) ;

printf (“x after AddOneByVal: %d\n”, X);

AddOneByRef (&x) ;
printf (“x after AddOneByRef: %d\n”, x);

> x at start.: 5
> x after AddOneByVal: 5
> x after AddOneByRef: 6

Pointers and arrays

* arrays are pointers!

— they’re pointers to the first element in the array

* arrays are not exactly pointers!

— cannot assign one array to another

 this results in a syntax error:

arrayl = array2;

Pointers and arrays and functions

since arrays are pointers, that means:

e arrays passed to a function always
result in call-by-reference

— does not make a copy of the array

— any changes made to an array
in a function will remain

e passing ONE ELEMENT is still call-by-value

—classes[0] isavalue, not a pointer

Pointers and structs

° remember, to access a structure member:

cisClass.classNum = 190;

 when we are using a pointer to that struct:
(*cisClassPtr) .classNum = 191;

cisClassPtr->classNum = 192;

* the —=> operator is simply shorthand
for using * and . together

— to access the value of a member of a structure

C-style strings are arrays too

* reminder: C strings are arrays of characters

— so use in functions is always call-by-reference
* remember scanf?

scanf (“%d”, &x); /* for int */

scanf (“%s”, str); /* for string */

* no “&"” because C-strings are arrays

C-style strings in functions

* using in functions:
/* function takes char pointer */

void ToUpper (char *word);
char* str = “hello”; /* c string*/

/* str is a ptr to an array of chars*/

ToUpper (str);

Makefiles

e contain a list of rules called by typing
make ruleName

in the command line

* example Makefile on the page for HW2
— more info in the comments inside the Makefile
— can create your own rules
— makes compiling, etc. a lot quicker and easier

Homework 2

* Trains

— structs, arrays of structs, C strings, separate
compilation, printf formatting, pointers

— hardest part is printing the train!
— readability of output (see sample output)

* hw2.c, trains.c, trains.h
— don’t submit Makefile or any other files!
— take credit for your code!

