
CIS 190: C/C++ Programming

Lecture 13

Templates

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

2

Overloading

• used to create multiple definitions for
functions in various settings:

– constructors (in a class)

– operators (in a class)

– functions

• let’s look at a simple swap function

 3

Swap Function

• this is a function to swap two integers:
void SwapVals(int &v1, int &v2) {

 int temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

4

Swap Function

• this is a function to swap two integers:
void SwapVals(int &v1, int &v2) {

 int temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

5

what if we want to
swap two floats?

Swap Function

• this is a function to swap two floats:
void SwapVals(float &v1, float &v2) {

 float temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

6

Swap Function

• this is a function to swap two floats:
void SwapVals(float &v1, float &v2) {

 float temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

7

what if we want to
swap two chars?

Swap Function

• this is a function to swap two chars:
void SwapVals(char &v1, char &v2) {

 char temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

8

Swap Function

• this is a function to swap two chars:
void SwapVals(char &v1, char &v2) {

 char temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

9

what if we want to
swap two strings?

Swap Function

• okay, this is getting ridiculous

10

Swap Function

• okay, this is getting ridiculous

• should be able to write just one function
that can handle all of these things

– and it is!

– using templates

11

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

12

What Are Templates?

• templates let us create functions and classes
that can use “generic” input and types

• this means that functions like
SwapVals() only need to be written once

– and then it can be used for almost anything

13

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

14

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

15

this keyword tells
the compiler that
what follows this
will be a template

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

16

this does not mean
“class” in the same
sense as C++ classes
with members!

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

17

this does not mean
“class” in the same
sense as C++ classes
with members!

in fact, the (more) correct
keyword to use is actually
“typename”, because we
are defining a new type

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

18

this does not mean
“class” in the same
sense as C++ classes
with members!

in fact, the (more) correct
keyword to use is actually
“typename”, because we
are defining a new type

but “class” is more common
by far, and so we will use class
to avoid confusion

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

19

“T” is the name
of our new type

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

20

“T” is the name
of our new type we can call it anything

we want, but using “T”
is the traditional way

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

21

“T” is the name
of our new type we can call it anything

we want, but using “T”
is the traditional way

(of course, we can’t use “int” or
“for” or any other types or
keywords as a name for our type)

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

• what this line means overall is that we plan to
use “T” in place of types (int, char, etc.)

22

Indicating Templates

• to let the compiler know you are going to
apply a template, use the following:

template <class T>

• what this line means overall is that we plan to
use “T” in place of types (int, char, etc.)

• this template prefix needs to be used before
both function declarations and definitions

23

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

24

Using Templates

template <class T>

• in order to create a function that uses
templates, we first prefix it with this

25

Using Templates

template <class T>

void SwapVals(T &v1, T &v2) {

}

• next, we use “T” in place of the types that
we want to be “generic” for our function

26

Using Templates

template <class T>

void SwapVals(T &v1, T &v2) {

 T temp;

}

• if we need these “generic” types inside our
function, we declare them as being type “T”

27

Using Templates

template <class T>

void SwapVals(T &v1, T &v2) {

 T temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

• everything else about our
function can remain the same

28

Using Templates

• when we call these templated functions,
nothing looks different:

SwapVals(intOne, intTwo);

SwapVals(charOne, charTwo);

SwapVals(strOne, strTwo);

29

(In)valid Use of Templates

• which of the following will work?
SwapVals(int, int);

SwapVals(char, string);

SwapVals(TRAIN_CAR, TRAIN_CAR);

SwapVals(double, float);

SwapVals(Shape, Shape);

SwapVals(“hello”, “world”);

30

(In)valid Use of Templates

• templated functions can handle any
input types that “makes sense”

– i.e., any type where the behavior that
occurs in the function is defined

• even user-defined types!

– as long as the behavior is defined

31

Question from Class

• Q: What will happen if we overload SwapVals()
manually for a specific type (like int)?

• A: The compiler accepts it, and a call to
SwapVals() with integers will default to our
manual overload of the function.

– It makes sense that if an int version of SwapVals()
exists, the compiler will not create one of its own.

32

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

33

Compiler Handling

• the compiler can create code to handle any
(valid) call of SwapVals() we can create

• it creates separate (overloaded) functions
called SwapVals() that take in ints, or
chars, or floats, or TRAIN_CAR structs, or
anything else that we could give

34

Compiler Handling

• exactly what versions of SwapVals() are
created is determined at _______ time

35

Compiler Handling

• exactly what versions of SwapVals() are
created is determined at compile time

• if we call SwapVals() with integers and
strings, the compiler will create versions of
the function that take in integers and strings

36

Separate Compilation

• which versions of templated function to
create are determined at compile time

• how does this affect our use of separate
compilation?

– function declaration in .h file

– function definition in .cpp file

– function call in separate .cpp file

37

Separate Compilation

• here’s an illustrative example:

38

template <class T>

void SwapVals(T &v1, T &v2);

swap.h

#include “swap.h”

template <class T>

void SwapVals(T &v1, T &v2)

{

 T temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

swap.cpp

#include “swap.h”

int main()

{

 int a = 3, b = 8;

 SwapVals(a, b);

}

main.cpp

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when swap.cpp is compiled…

39

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when swap.cpp is compiled…

– there are no calls to SwapVals()

40

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when swap.cpp is compiled…

– there are no calls to SwapVals()

– swap.o has no SwapVals() definitions made

41

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when main.cpp is compiled…

42

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when main.cpp is compiled…

– it assumes everything is fine

– since swap.h has the appropriate declaration

43

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when main.o and swap.o are linked…

44

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when main.o and swap.o are linked…

– everything goes wrong

45

Separate Compilation

• most compilers (including eniac’s) cannot
handle separate compilation with templates

• when main.o and swap.o are linked…

– everything goes wrong

– error: undefined reference to

‘void SwapVals<int>(int&, int&)’

 46

Solutions

• the template function definition code must be
in the same file as the function call code

• two ways to do this:

– place function definition in main.c

– place function definition in swap.h,
which is #included in main.c

47

Solutions

• second option keeps some sense of separate
compilation, and better allows code reuse

48

// declaration

template <class T>

void SwapVals(T &v1, T &v2);

// definition

template <class T>

void SwapVals(T &v1, T &v2)

{

 T temp;

 temp = v1;

 v1 = v2;

 v2 = temp;

}

swap.h

#include “swap.h”

int main()

{

 int a = 3, b = 8;

 SwapVals(a, b);

}

main.cpp

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

49

Class Templates

• syntax for class declaration is very similar:
template <class T>

class Pair {

private:

 T GetFirst();

 void SetFirst(T first);

private:

 T m_first;

 T m_second;

};

50

Class Templates

• syntax for class declaration is very similar:
template <class T>

class Pair {

private:

 T GetFirst();

 void SetFirst(T first);

private:

 T m_first;

 T m_second;

};

51

Class Templates

• syntax for class declaration is very similar:
template <class T>

class Pair {

private:

 T GetFirst();

 void SetFirst(T first);

private:

 T m_first;

 T m_second;

};

52

Class Templates

• syntax for class declaration is very similar:
template <class T>

class Pair {

private:

 T GetFirst();

 void SetFirst(T first);

private:

 T m_first;

 T m_second;

};

53

Templated Classes

• most common use for templated classes is
containers (like our Pair example)

• in fact, many of the C++ STL containers
actually use templates behind the scenes!

– like vectors!

54

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

55

Class Constructors

• normally, we create just one constructor, by
using default parameters:

Date (int m = 10, int d = 15,

 int y = 2014);

• this allows us to create a Date object with no
arguments, all arguments, and everything
in between

56

Templated Class Constructors

• can we do the same with our Pair class?

57

Templated Class Constructors

• can we do the same with our Pair class?

Pair (T first = 0, T second = 0);

58

Templated Class Constructors

• can we do the same with our Pair class?

Pair (T first = 0, T second = 0);

• this works fine if we’re creating a Pair object
of a number type (int, float, double), but what
about strings, or TRAIN_CAR?

59

Templated Class Constructors

• can we do the same with our Pair class?

Pair (T first = 0, T second = 0);

• this works fine if we’re creating a Pair object
of a number type (int, float, double), but what
about strings, or TRAIN_CAR?

• the nature of templates means we can’t use
default parameters for templated classes

60

Templated Class Constructors

• need to create two constructors for the class

• ???

– and

• ???

61

Templated Class Constructors

• need to create two constructors for the class

• empty constructor (no arguments)

Pair ();

– and

• ???

62

Templated Class Constructors

• need to create two constructors for the class

• empty constructor (no arguments)

Pair ();

– and

• complete constructor (all arguments)

Pair (T first, T second);

63

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

64

Templated Class Definitions

• just like with regular functions, member
function definitions need the template prefix

template <class T>

65

Templated Class Definitions

• just like with regular functions, member
function definitions need the template prefix

template <class T>

• in addition, they need a template indicator
before the scope resolution operator:

Pair<T>::Pair(T first, T second);

66

Templated Class Definitions

• just like with regular functions, member
function definitions need the template prefix

template <class T>

• in addition, they need a template indicator
before the scope resolution operator:

Pair<T>::Pair(T first, T second);

67

note that the constructor
name does not contain <T>,
only the class name does

Templated Class Definitions

• everything else about the function behaves as
with non-member templated functions
Pair<T>::Pair(T first, T second)

{

 SetFirst(first);

 SetSecond(second);

}

 68

Templated Class Definitions

• everything else about the function behaves as
with non-member templated functions
Pair<T>::Pair(T first, T second)

{

 m_first = first;

 m_second = second;

}

 69

since most error checking is not
feasible with templated classes,
it is fine to directly set variables
in the constructor, as above

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

70

Using Templated Classes

• identical to the way you use templated classes
provided by the STL (like vectors)

71

Using Templated Classes

• identical to the way you use templated classes
provided by the STL (like vectors)

vector <int> myVector(10);

vector <char> aVector;

72

Using Templated Classes

• identical to the way you use templated classes
provided by the STL (like vectors)

vector <int> myVector(10);

vector <char> aVector;

Pair <string> hi(“hello”, “world”);

Pair <int> coordinates;

73

Outline
• Overloading Functions

• Templates

– Function Templates

– Compiler Handling & Separate Compilation

• Class Templates

– Declaring

– Constructors

– Defining

– Using

• Project

74

Project

• alpha due this Sunday (23rd) @ midnight

• presentation days will be Tuesday, Dec 2nd
(6-7:30) and Wednesday, Dec 3rd (1:30-3)

• attendance at both presentation days is
mandatory! you will lose points for skipping!

• final code turn-in is Wed, Dec 3rd @ midnight

75

