CIS 190: C/C++ Programming

Lecture 12
Bits and Pieces of C++

Outline

Pass by value VS by reference VS a reference
Exceptions

Friends

Inline Functions

Namespaces

Project

Passing by Value

* the “default” way to pass variables to functions

// function prototype
void PrintVal (int x);

int x = 5;

int *xPtr = &x;

PrintVal (x) ; // function call
PrintVal (*xPtr); // also valid call

Passing by Reference

e uses pointers, and only other alternative in C
— uses * to dereference, and & to get address

void ChangeVal (int *x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal (&x) ; // function call
ChangeVal (xPtr); // also valid call

Passing a Reference

e uses references, and is available in C++

— different from passing by reference

void ChangeVal (int &x); //prototype

int x = 5;
int *xPtr = &x;
ChangeVal (x) ; //function call

ChangeVal (*xPtr); //also valid call

Passing a Reference

e uses references, and is available in C++

— different from passing by reference

void ChangeVal (int &x); //prototype

int x = 5;
int &xRef = x; //create reference
ChangeVal (x) ; //function call

ChangeVal (xRef); //also valid call

Pointers VS References

we already know all about pointers... how are
references different?

references must be initialized at declaration
references cannot be changed

references can be treated as another “name”
for a variable (no dereferencing)

Reference or Pointer?

for the following applications, which is more
appropriate: a reference, or a pointer?

arguments in overloaded operators
as part of a NODE definition

a function that swaps two arguments
dynamic memory allocation

when the value needs to be NULL

Outline

Pass by value VS by reference VS a reference
Exceptions

Friends

Inline Functions

Namespaces

Project

Error Handling

e common errors.:
— file not found/could not be opened
— could not allocate memory
— out-of-bounds on vector

* right now, we print out an error message and
callexit ()

— handle the error right where it occurs

Handling Errors at Occurrence

e advantages:

— easy to find because code is right there

* disadvantages:

— error handling scattered throughout code
e code duplication

* code inconsistency (even worse!)

— errors are handled however the original coder
decided would be best

Two “Coders” with Classes

* class implementer
— creates the class definition
— knows what constitutes an error
* decides how to handle errors

* class user
— uses the class implementation
— knows how they want to handle errors

* (if handled internally, the class user may not
even know an error occurred)

Example: Classy Trains

* how did we handle inappropriate/incorrect
information for our trains?

Example: Classy Trains

* how did we handle inappropriate/incorrect
information for our trains?

e why?

Example: Classy Trains

* how did we handle inappropriate/incorrect
information for our trains?

e why?

 what if we were getting this information
directly from a user instead of a file?

Example: Classy Trains

e what if we wanted this to be usable for both
methods of inputting data?

* we need to separate error detection from
error handling

Example: Classy Trains

e what if we wanted this to be usable for both
methods of inputting data?

* we need to separate error detection from
error handling

* implementer knows how to detect, and
the user can decide how to handle

Exceptions

* exceptions are used to handle exceptional
cases, or cases that shouldn’t normally occur

e allow us to indicate an error has occurred
without explicitly handling it

— C++ uses these too, like when we try to use
.at () to examine an out-of-bounds element

Try / Catch / Throw

e exceptions are implemented using the
keywords try, catch, and throw

Try / Catch / Throw

e exceptions are implemented using the
keywords try, catch, and throw

* the try keyword means we are going to try
something, even though we are not sure it is
going to perform correctly

Try / Catch / Throw

e exceptions are implemented using the
keywords try, catch, and throw

e the throw keyword is used when we
encounter an error, and means we are going
to “throw” two things :

— a value (explicit)
— control flow (implicit)

Try / Catch / Throw

e exceptions are implemented using the
keywords try, catch, and throw

* the catch keyword means we are going to try
to catch at most one value

— to catch different types of values, we need
multiple catch statements

Exception Example

// inside SetCarID() function

if (newID < MIN ID VAL ||
newID > MAX ID VAL) ({

cerr << “ID invalid, no change”;

23

Exception Example

// inside SetCarID() function

try {
1f (newlID < MIN ID VAL ||
newID > MAX_ID;VAL) {

cerr << “ID invalid, no change”;

}
catch () {

24

Exception Example

// inside SetCarID() function

try {
1f (newlID < MIN ID VAL ||
newID > MAX_ID;VAL) {

throw (newID) ;

}
catch () {

Exception Example

// inside SetCarID() function

try {
1f (newlID < MIN ID VAL ||
newID > MAX_ID;VAL) {

throw (newID) ;

}
catch (int ID) {

Exception Example

// inside SetCarID() function

try {
1f (newlID < MIN ID VAL ||
newID > MAX_ID;VAL) {

throw (newID) ;

}
catch (int ID) {

cerr << “ID invalid, no change”;

27

Using Catch

e the catch keyword requires:
— one parameter
* typename (int, exception, out_of range, etc)
* name (newlD, e, oor, etc.) [optional]

* to catch multiple types of exceptions, you
need to use multiple catch blocks

Using Catch

e you can throw from inside a catch block,
but this should be done sparingly and
only after careful consideration

— most of the time, a nested try-catch means you
should re-evaluate your program design

* uncaught exceptions will cause the
terminate () function to be called

Using Catch

e catch blocks are run in order, so exceptions
should be caught in order from most specific
to least specific

* to catch all possible exceptions, use:
catch(...)

* literally use three periods as a parameter

Throwing Out of a Function

* we can throw exceptions without try/catch

— most commonly done within functions

* requires that we list possible exception types
in the function prototype and definition

— called a throw list

Throw List Example: Inside

void SetCarID(int newID) throw (int) {

if (newID < MIN ID VAL ||
newID > MAX ID VAL) ({

throw (newID) ;
}

else {

m;parID = newlD;

}

32

Throw List Example: Inside

void SetCarID (int newID){

if (newID < MIN ID VAL ||
newID > MAX ID VAL) ({

throw (newID) ;
}

else {

m;parID = newlD;

}

33

Throw List Example: Inside

void SetCarID (int newID) {

if (newID < MIN ID VAL ||
newID > MAX ID VAL) ({

throw (newID) ;
}

else {

m;parID = newlD;

this function might
throw an integer

34

Throw List Example: Outside vO

// inside main/()

train[0] .SetCarID(-1) ;

* what will happen if we run this code?

Throw List Example: Outside vO

// inside main/()

train[0] .SetCarID(-1) ;

* what will happen if we run this code?

— the exception won’t be caught
— the terminate () function will be called

Throw List Example: Outside v1

// inside main/()

try {
train[0] .SetCarID(-1) ;

} catch (int ID) {

cerr << “ID invalid, no change”;

37

Throw List Example: Outside v1

// inside main/()

try {
train[0] .SetCarID(-1) ;

} catch (int ID) {

cerr << “ID invalid, no change”;

} this user has based their code
on getting input from a file

38

Throw List Example: Outside v2

// inside main ()
while (set == false) {
try {
train[0] .SetCarlID (userID) ;
set = true;
} catch (int ID) {
cerr << “ID invalid, try again:”;

cin >> userlD;

Throw List Example: Outside v2

// inside main ()
while (set == false) {

try {

this user has based their
code on getting input
from a user, and being
able to repeat requests

train[0] .SetCarlID (userID) ;

set = true;
} catch (int ID) {

cerr << “ID invalid, try again:”;

cin >> userlD;

Throw Lists

warn programmers that functions throw
exceptions without catching them

throw lists should match up with what is
thrown and not caught inside the function

— otherwise, it can lead to a variety of errors,
including the function unexpected ()

can also have empty throw lists for clarity:
int GetCarID() throw () ;

Exception Planning

* how does the exception in SetCarID ()
affect the performance of our constructor?

Exception Planning

* how does the exception in SetCarID ()
affect the performance of our constructor?

* need to think carefully about when, how, and
why we throw exceptions

Exception Classes

* we can create, throw, and catch exception
classes that we have created

* we can even create hierarchies of exception
classes using inheritance

— catching the parent class will also
catch all child class exceptions

Exception Class Example

class MathError { /*...*/ };

class DivideByZeroError:
public MathError { /*...*/ };

class InvalidNegativeError:
public MathError { /*...*/ };

45

Outline

Pass by value VS by reference VS a reference
Exceptions

Friends

Inline Functions

Namespaces

Project

46

Friend Functions

e non-member functions that have
member-style access

 function is declared inside the class

— will be public regardless of specifier

* designate using the friend keyword
friend void AFriendFunction() ;

Friend Classes

e classes can also be declared to be friends of
another class

class Milo {

public:

};

class Otis { ... };

48

Friend Classes

e classes can also be declared to be friends of
another class

class Milo {
public:
friend class Otis;

};

class Otis { ... };

49

Friend Classes

e classes can also be declared to be friends of
another class

the Otis class now
has access to all of
public: the private members
of the Milo class

class Milo {

friend class Otis;

};

class Otis { ... };

50

Friend Classes

e when one class references another in its
definition, we need a forward declaration

— we’ve used these before: remember this?
typedef struct node* NODEPTR;

 in order to reference the Otis class before
it’s defined, we need something similar:
class Otis;

— before the Milo class declaration

Using Friends

 why do we want to give access to private
members?

Using Friends

 why do we want to give access to private
members?

— use for testing
— increased speed
— operator overloading

* non-member functions get automatic type conversion

— enhances encapsulation

* a function being a friend is specified in the class

Outline

Pass by value VS by reference VS a reference
Exceptions

Friends

Inline Functions

Namespaces

Project

54

Inline Functions

* aninline function gives the complete
definition in the class declaration

// inside declaration
int GetCarID() {

return m carlID;

* no definition of the function in the .cpp file

Inline Functions

* used only for short functions

Inline Functions

* used only for short functions

— accessors, empty constructors, one-line functions

 compiler treats inline functions a special way

Inline Functions

* used only for short functions

— accessors, empty constructors, one-line functions

 compiler treats inline functions a special way

— the function code is inserted in place of each
function call at compile time

— why?

Inline Functions

* used only for short functions

— accessors, empty constructors, one-line functions

 compiler treats inline functions a special way

— the function code is inserted in place of each
function call at compile time

— saves overhead of a function invocation

Non-Class Inline Functions

* we can make any function an inline function

 use the inline keyword
inline void PrintHello () {
cout << “Hello”;

Outline

Pass by value VS by reference VS a reference
Exceptions

Friends

Inline Functions

Namespaces

Project

61

Namespaces

* we already know and use one namespace:

using namespace std;

e we can also define and use our own
namespaces

Namespace Declarations

namespace Alice {
void Hello() ;

namespace Bob {
void Hello() ;

}

63

Namespace Definitions

namespace Alice {

void Hello () {
cout << “Hello from Alice!”; }

}

namespace Bob {

void Hello () {
cout << “Hello from Bob!”; }

64

Using Namespaces vl

using namespace Alice;
int main() {

Hello () ;

Hello () ;

return 0;

65

Using Namespaces vl

using namespace Alice;

int main() {

Hello(); what do each of
Hello () ; these calls to
Hello() print out?

return 0;

Using Namespaces v2

int main() {

{
using namespace Alice;
Hello () ;

b
using namespace Bob;
Hello() ;

}

return 0;

67

Using Namespaces v2

int main() {

{

using namespace Alice;

Hello () ;
PoAo

using namespace Bob;
Hello() ;

}

return 0;

what do each of
these calls to
Hello() print out?

68

Using Namespaces

 What if we use Alice as a universal
namespace? Can we call Bob’s Hello()?

 How else can we explicitly call one function or
the other?

 What if we nest namespaces?

LIVECODING

Outline

Pass by value VS by reference VS a reference
Exceptions

Friends

Inline Functions

Namespaces

Project

70

Project

* signup for presentation slots next class
e alpha due next Sunday night (the 23rd)

* mini-course project demo day (optional)
— December 10th or 11th (reading days)
— poster-session style presentation

Survey

1% extra credit overall

please fill out honestly (it’'s anonymous, and
won’t be looked at until after grades are in)

online course evaluation: fill out for this
class, not for the lecture portion

pick up your feedback after turning in survey

