
CIS 190: C/C++ Programming

Lecture 12

Bits and Pieces of C++

1

Outline

• Pass by value VS by reference VS a reference

• Exceptions

• Friends

• Inline Functions

• Namespaces

• Project

2

Passing by Value

• the “default” way to pass variables to functions

// function prototype

void PrintVal (int x);

int x = 5;

int *xPtr = &x;

PrintVal(x); // function call

PrintVal(*xPtr); // also valid call

 3

Passing by Reference

• uses pointers, and only other alternative in C

– uses * to dereference, and & to get address

void ChangeVal(int *x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(&x); // function call

ChangeVal(xPtr); // also valid call

4

Passing a Reference

• uses references, and is available in C++

– different from passing by reference

void ChangeVal(int &x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(x); //function call

ChangeVal(*xPtr); //also valid call

5

Passing a Reference

• uses references, and is available in C++

– different from passing by reference

void ChangeVal(int &x); //prototype

int x = 5;

int &xRef = x; //create reference

ChangeVal(x); //function call

ChangeVal(xRef); //also valid call

6

Pointers VS References

• we already know all about pointers… how are
references different?

• references must be initialized at declaration

• references cannot be changed

• references can be treated as another “name”
for a variable (no dereferencing)

7

Reference or Pointer?

• for the following applications, which is more
appropriate: a reference, or a pointer?

• arguments in overloaded operators

• as part of a NODE definition

• a function that swaps two arguments

• dynamic memory allocation

• when the value needs to be NULL

8

Outline

• Pass by value VS by reference VS a reference

• Exceptions

• Friends

• Inline Functions

• Namespaces

• Project

9

Error Handling

• common errors:

– file not found/could not be opened

– could not allocate memory

– out-of-bounds on vector

• right now, we print out an error message and
call exit()

– handle the error right where it occurs

10

Handling Errors at Occurrence

• advantages:

– easy to find because code is right there

• disadvantages:

– error handling scattered throughout code

• code duplication

• code inconsistency (even worse!)

– errors are handled however the original coder
decided would be best

11

Two “Coders” with Classes

• class implementer

– creates the class definition

– knows what constitutes an error

• decides how to handle errors

• class user

– uses the class implementation

– knows how they want to handle errors

• (if handled internally, the class user may not
even know an error occurred)

12

Example: Classy Trains

• how did we handle inappropriate/incorrect
information for our trains?

13

Example: Classy Trains

• how did we handle inappropriate/incorrect
information for our trains?

• why?

14

Example: Classy Trains

• how did we handle inappropriate/incorrect
information for our trains?

• why?

• what if we were getting this information
directly from a user instead of a file?

15

Example: Classy Trains

• what if we wanted this to be usable for both
methods of inputting data?

• we need to separate error detection from
error handling

16

Example: Classy Trains

• what if we wanted this to be usable for both
methods of inputting data?

• we need to separate error detection from
error handling

• implementer knows how to detect, and
the user can decide how to handle

17

Exceptions

• exceptions are used to handle exceptional
cases, or cases that shouldn’t normally occur

• allow us to indicate an error has occurred
without explicitly handling it

– C++ uses these too, like when we try to use
.at() to examine an out-of-bounds element

18

Try / Catch / Throw

• exceptions are implemented using the
keywords try, catch, and throw

19

Try / Catch / Throw

• exceptions are implemented using the
keywords try, catch, and throw

• the try keyword means we are going to try
something, even though we are not sure it is
going to perform correctly

20

Try / Catch / Throw

• exceptions are implemented using the
keywords try, catch, and throw

• the throw keyword is used when we
encounter an error, and means we are going
to “throw” two things :

– a value (explicit)

– control flow (implicit)

 21

Try / Catch / Throw

• exceptions are implemented using the
keywords try, catch, and throw

• the catch keyword means we are going to try
to catch at most one value

– to catch different types of values, we need
multiple catch statements

22

Exception Example

// inside SetCarID() function

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 cerr << “ID invalid, no change”;

 }

23

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 cerr << “ID invalid, no change”;

 }

}

catch () {

}
24

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

}

catch () {

}
25

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

}

catch (int ID) {

}
26

Exception Example

// inside SetCarID() function

try {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

}

catch (int ID) {

 cerr << “ID invalid, no change”;

}
27

Using Catch

• the catch keyword requires:

– one parameter

• typename (int, exception, out_of_range, etc)

• name (newID, e, oor, etc.) [optional]

• to catch multiple types of exceptions, you
need to use multiple catch blocks

28

Using Catch

• you can throw from inside a catch block,
but this should be done sparingly and
only after careful consideration

– most of the time, a nested try-catch means you
should re-evaluate your program design

• uncaught exceptions will cause the
terminate() function to be called

29

Using Catch

• catch blocks are run in order, so exceptions
should be caught in order from most specific
to least specific

• to catch all possible exceptions, use:
catch(...)

• literally use three periods as a parameter

30

Throwing Out of a Function

• we can throw exceptions without try/catch

– most commonly done within functions

• requires that we list possible exception types
in the function prototype and definition

– called a throw list

31

Throw List Example: Inside

void SetCarID(int newID) throw (int) {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

 else {

 m_carID = newID;

 }

}

32

Throw List Example: Inside

void SetCarID(int newID) throw (int) {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

 else {

 m_carID = newID;

 }

}

33

Throw List Example: Inside

void SetCarID(int newID) throw (int) {

 if (newID < MIN_ID_VAL ||

 newID > MAX_ID_VAL) {

 throw(newID);

 }

 else {

 m_carID = newID;

 }

}

34

this function might
throw an integer

Throw List Example: Outside v0

// inside main()

 train[0].SetCarID(-1);

• what will happen if we run this code?

35

Throw List Example: Outside v0

// inside main()

 train[0].SetCarID(-1);

• what will happen if we run this code?

– the exception won’t be caught

– the terminate() function will be called

36

Throw List Example: Outside v1

// inside main()

 try {

 train[0].SetCarID(-1);

 } catch (int ID) {

 cerr << “ID invalid, no change”;

 }

37

Throw List Example: Outside v1

// inside main()

 try {

 train[0].SetCarID(-1);

 } catch (int ID) {

 cerr << “ID invalid, no change”;

 }

38

this user has based their code
on getting input from a file

Throw List Example: Outside v2

// inside main()

while(set == false) {

 try {

 train[0].SetCarID(userID);

 set = true;

 } catch (int ID) {

 cerr << “ID invalid, try again:”;

 cin >> userID;

 }

}

39

Throw List Example: Outside v2

// inside main()

while(set == false) {

 try {

 train[0].SetCarID(userID);

 set = true;

 } catch (int ID) {

 cerr << “ID invalid, try again:”;

 cin >> userID;

 }

}

40

this user has based their
code on getting input
from a user, and being
able to repeat requests

Throw Lists

• warn programmers that functions throw
exceptions without catching them

• throw lists should match up with what is
thrown and not caught inside the function

– otherwise, it can lead to a variety of errors,
including the function unexpected()

• can also have empty throw lists for clarity:
int GetCarID() throw ();

41

Exception Planning

• how does the exception in SetCarID()
affect the performance of our constructor?

42

Exception Planning

• how does the exception in SetCarID()
affect the performance of our constructor?

• need to think carefully about when, how, and
why we throw exceptions

43

Exception Classes

• we can create, throw, and catch exception
classes that we have created

• we can even create hierarchies of exception
classes using inheritance

– catching the parent class will also
catch all child class exceptions

44

Exception Class Example

class MathError { /*...*/ };

class DivideByZeroError:

 public MathError { /*...*/ };

class InvalidNegativeError:

 public MathError { /*...*/ };

45

Outline

• Pass by value VS by reference VS a reference

• Exceptions

• Friends

• Inline Functions

• Namespaces

• Project

46

Friend Functions

• non-member functions that have
member-style access

• function is declared inside the class

– will be public regardless of specifier

• designate using the friend keyword
friend void AFriendFunction();

47

Friend Classes

• classes can also be declared to be friends of
another class

class Milo {

public:

 ...

};

class Otis { ... };

 48

Friend Classes

• classes can also be declared to be friends of
another class

class Milo {

public:

 friend class Otis;

};

class Otis { ... };

 49

Friend Classes

• classes can also be declared to be friends of
another class

class Milo {

public:

 friend class Otis;

};

class Otis { ... };

 50

the Otis class now
has access to all of
the private members
of the Milo class

Friend Classes

• when one class references another in its
definition, we need a forward declaration

– we’ve used these before: remember this?

typedef struct node* NODEPTR;

• in order to reference the Otis class before
it’s defined, we need something similar:

class Otis;

– before the Milo class declaration

 51

Using Friends

• why do we want to give access to private
members?

52

Using Friends

• why do we want to give access to private
members?

– use for testing

– increased speed

– operator overloading

• non-member functions get automatic type conversion

– enhances encapsulation

• a function being a friend is specified in the class

53

Outline

• Pass by value VS by reference VS a reference

• Exceptions

• Friends

• Inline Functions

• Namespaces

• Project

54

Inline Functions

• an inline function gives the complete
definition in the class declaration

// inside declaration

int GetCarID() {

 return m_carID;

}

• no definition of the function in the .cpp file

55

Inline Functions

• used only for short functions

56

Inline Functions

• used only for short functions

– accessors, empty constructors, one-line functions

• compiler treats inline functions a special way

57

Inline Functions

• used only for short functions

– accessors, empty constructors, one-line functions

• compiler treats inline functions a special way

– the function code is inserted in place of each
function call at compile time

– why?

58

Inline Functions

• used only for short functions

– accessors, empty constructors, one-line functions

• compiler treats inline functions a special way

– the function code is inserted in place of each
function call at compile time

– saves overhead of a function invocation

59

Non-Class Inline Functions

• we can make any function an inline function

• use the inline keyword

inline void PrintHello() {

 cout << “Hello”;

}

60

Outline

• Pass by value VS by reference VS a reference

• Exceptions

• Friends

• Inline Functions

• Namespaces

• Project

61

Namespaces

• we already know and use one namespace:

using namespace std;

• we can also define and use our own
namespaces

62

Namespace Declarations

namespace Alice {

 void Hello();

}

namespace Bob {

 void Hello();

}

 63

Namespace Definitions

namespace Alice {

 void Hello() {

 cout << “Hello from Alice!”; }

}

namespace Bob {

 void Hello() {

 cout << “Hello from Bob!”; }

}

64

Using Namespaces v1

using namespace Alice;

int main() {

 Hello();

 Hello();

 return 0;

}

65

Using Namespaces v1

using namespace Alice;

int main() {

 Hello();

 Hello();

 return 0;

}

66

what do each of
these calls to
Hello() print out?

Using Namespaces v2

int main() {

 {

 using namespace Alice;

 Hello();

 } {

 using namespace Bob;

 Hello();

 }

 return 0;

}

67

Using Namespaces v2

int main() {

 {

 using namespace Alice;

 Hello();

 } {

 using namespace Bob;

 Hello();

 }

 return 0;

}

68

what do each of
these calls to
Hello() print out?

Using Namespaces

• What if we use Alice as a universal
namespace? Can we call Bob’s Hello()?

• How else can we explicitly call one function or
the other?

• What if we nest namespaces?

69
LIVECODING LIVECODING

Outline

• Pass by value VS by reference VS a reference

• Exceptions

• Friends

• Inline Functions

• Namespaces

• Project

70

Project

• signup for presentation slots next class

• alpha due next Sunday night (the 23rd)

• mini-course project demo day (optional)

– December 10th or 11th (reading days)

– poster-session style presentation

71

Survey

• 1% extra credit overall

• please fill out honestly (it’s anonymous, and
won’t be looked at until after grades are in)

• online course evaluation: fill out for this
class, not for the lecture portion

• pick up your feedback after turning in survey

72

