
CIS 190: C/C++ Programming 

Lecture 10 

Inheritance 
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Code Reuse 

• important to successful coding 

 

• efficient 

– no need to reinvent the wheel 

• error free (more likely to be) 

– code has been previously used/test 
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Code Reuse Examples 

• What are some ways we reuse code? 

 

 

 

 

• Any specific examples? 
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Code Reuse Examples 

• What are some ways we reuse code? 

– functions 

– classes 

 

 

• Any specific examples? 

– calling Insert() and a modified Delete() for Move() 

– calling accessor functions inside a constructor 
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Code Reuse Examples 

• What are some ways we reuse code? 

– functions 

– classes 

– inheritance – what we’ll be covering today 

 

• Any specific examples? 

– calling Insert() and a modified Delete() for Move() 

– calling accessor functions inside a constructor 
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• Code Reuse 

• Object Relationships 
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Refresher on Objects 

• objects are what we call an instance of a class 

 

• for example: 

– Rectangle is a class 

– r1 is a variable of type Rectangle 

– r1 is a Rectangle object 
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Object Relationships 

• two types of object relationships 

 

• is-a 

– inheritance 

 

• has-a 

– composition 

– aggregation 

 

both are forms 
of association 
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Inheritance Relationship 

a Car is-a Vehicle 
 

 

• this is called inheritance 
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Inheritance Relationship 

a Car is-a Vehicle 
 

• the Car class inherits from the Vehicle class 

 

• Vehicle is the general class, or the parent class 

• Car is the specialized class, or child class, that 
inherits from Vehicle 
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Inheritance Relationship Code 

class Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numAxles; 

    int    m_numWheels; 

    int    m_maxSpeed; 

    double m_weight; 

    // etc 

} ; 
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Inheritance Relationship Code 

class Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numAxles; 

    int    m_numWheels; 

    int    m_maxSpeed; 

    double m_weight; 

    // etc 

} ; 
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all Vehicles have 
axles, wheels, a 
max speed, and a 
weight 



Inheritance Relationship Code 

class Car { 

   

 

 

 

 

 

 

 

} ; 
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Inheritance Relationship Code 

class Car: public Vehicle { 

   

 

 

 

 

 

 

 

} ; 
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Car inherits from 
the Vehicle class 



Inheritance Relationship Code 

class Car: public Vehicle { 

   

 

 

 

 

 

 

 

} ; 
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Car inherits from 
the Vehicle class 

don’t forget the 
colon here! 



Inheritance Relationship Code 

class Car: public Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numSeats; 

    double m_MPG; 

    string m_color; 

    string m_fuelType; 

    // etc 

} ; 

 

17 

all Cars have a 
number of seats, a 
MPG value, a color, 
and a fuel type 



Inheritance Relationship Code 

class Car:  

  public Vehicle { /*etc*/ }; 
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Inheritance Relationship Code 

class Car:  

  public Vehicle { /*etc*/ }; 

class Plane:  

  public Vehicle { /*etc*/ }; 

class SpaceShuttle:  

  public Vehicle { /*etc*/ }; 

class BigRig:  

  public Vehicle { /*etc*/ }; 
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Composition Relationship 

a Car has-a Chassis 
 

 

• this is called composition 
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Composition Relationship 

a Car has-a Chassis 
 

• the Car class contains an object of type Chassis 

 

• a Chassis object is part of the Car class 

• a Chassis cannot “live” out of context of a Car 

– if the Car is destroyed, the Chassis is also destroyed 
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Composition Relationship Code 

class Chassis { 

  public: 

    //functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 
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Composition Relationship Code 

class Chassis { 

  public: 

    //functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 

 

23 

all Chassis have 
a material, a 
weight, and a 
maxLoad they 
can hold 



Composition Relationship Code 

class Chassis { 

  public: 

    //functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 
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also, notice 
that there is 
no inheritance 
for the Chassis 
class 



Composition Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

     

 

} ; 
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Composition Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

    // has-a (composition) 

    Chassis m_chassis; 

} ; 
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Aggregation Relationship 

a Car has-a Driver 
 

 

• this is called aggregation 
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Aggregation Relationship 

a Car has-a Driver 
 

• the Car class is linked to an object of type Driver 

 

• Driver class is not directly related to the Car class 

• a Driver can live out of context of a Car 

• a Driver must be “contained” in the Car  
object via a pointer to a Driver object 
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Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 
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Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 
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Driver itself is a child 
class of Person 



Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 
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Driver inherits all of Person’s member variables 
(Date m_age, string m_name, etc.) so they 
aren’t included in the Driver child class 

Driver itself is a child 
class of Person 



Aggregation Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

     

 

} ; 
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Aggregation Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

    // has-a (aggregation) 

    Person *m_driver; 

} ; 
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Visualizing Object Relationships 

• on paper, draw a representation of how the 
following objects relate to each other 

• make sure the type of relationship is clear 
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• Engine 
• Driver 
• Person 
• Owner 
• Chassis 

• Car 
• Vehicle 
• BigRig 
• Rectangle 
• SpaceShuttle 
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Inheritance Access Specifiers 

• inheritance can be done via public, private, or 
protected 

• we’re going to focus exclusively on public 
 

• you can also have multiple inheritance 

– where a child class has more than one parent 

• we won’t be covering this 

36 



Hierarchy Example 

Vehicle 
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Hierarchy Example 

Vehicle 

etc. Car Plane BigRig 
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Hierarchy Example 

Vehicle 

SUV 

etc. 

Sedan 

Car Plane BigRig 

Jeep Van 
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Hierarchy Example 

Vehicle 

SUV 

etc. 

Sedan 

Car Plane BigRig 

Jeep Van 
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Hierarchy Vocabulary 

• more general class (e.g., Vehicle) can be called: 

– parent class 

– base class 

– superclass 

• more specialized class (e.g., Car) can be called: 

– child class 

– derived class 

– subclass 
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Hierarchy Details 

• parent class contains all that is common among 
its child classes (less specialized) 

– Vehicle has a maximum speed, a weight, etc. 
because all vehicles have these 

 

• member variables and functions of the parent 
class are inherited by all of its child classes 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• use 

– the child class takes advantage of the parent class 
behaviors exactly as they are 

• like the mutators and accessors from the parent class 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• extend 

– the child class creates entirely new behaviors 
• a RepaintCar() function for the Car child class 

• mutators/accessors for new member variables 
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Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• replace 

– child class overrides parent class’s behaviors 

• (we’ll cover this later today) 
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What is Inherited 

Vehicle Class 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
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What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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What is Inherited 
Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 
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What is Inherited 
Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 

54 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 
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• child class 
members 
(functions  

& variables) ? 



What is Inherited 
Car Class 

• public  
fxns&vars 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• protected fxns&vars 
• private variables 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• child class 
members 
(functions  

& variables) 

• public  
fxns&vars 

• protected  
fxns&vars 

 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• private variables 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 
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• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

can access and invoke, but 
are not directly inherited 62 

• child class 
members 
(functions  

& variables) 
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Handling Access 

• child class has access to parent class’s: 

– public member variables/functions 

– protected member variables/functions 
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Handling Access 

• child class has access to parent class’s: 

– public member variables/functions 

– protected member variables/functions 
 

– but not private member variables/functions 
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Handling Access 

• child class has access to parent class’s: 

– public member variables/functions 

– protected member variables/functions 
 

– but not private member variables/functions 

 

• how should we set the access modifier for 
parent member variables we want the child 
class to be able to access? 
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Handling Access 

• we should not make these variables protected! 

 

• leave them private! 
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Handling Access 

• we should not make these variables protected! 

 

• leave them private! 

• instead, child class uses protected functions 
when interacting with parent variables 

– mutators 

– accessors 
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Livecoding 

• let’s look more closely at inheritance 

 

• with these classes: 

– Shape 

• Rectangle 

• Pentagon 

• Circle 

69 
LIVECODING LIVECODING 
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Specialization 

• child classes are meant to be  
more specialized than parent classes 

– adding new member functions 

– adding new member variables 

 

• child classes can also specialize by overriding 
parent class member functions 

– child class uses exact same function signature 

71 



Overloading vs Overriding  

• overloading 

– ??? 
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Overloading vs Overriding  

• overloading 

– use the same function name, but with different 
parameters for each overloaded implementation 
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Overloading vs Overriding  

• overloading 

– use the same function name, but with different 
parameters for each overloaded implementation 

 

• overriding 

– ??? 
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Overloading vs Overriding  

• overloading 

– use the same function name, but with different 
parameters for each overloaded implementation 

 

• overriding 

– use the same function name and parameters, but 
with a different implementation 

– child class method “hides” parent class method 

– only possible by using inheritance 
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Overriding Examples 

• for these examples, the Vehicle class now 
contains these public functions: 
void Upgrade(); 

void PrintSpecs(); 

void Move(double distance); 
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Overriding Examples 

• for these examples, the Vehicle class now 
contains these public functions: 
void Upgrade(); 

void PrintSpecs(); 

void Move(double distance); 

 

• Car class inherits all of these public functions 

– it can therefore override them 
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Basic Overriding Example 

• Car class overrides Upgrade() 
void Car::Upgrade() 

{ 

  // entirely new Car-only code 

} 

 

• when Upgrade() is called on a object of type 
Car, what happens? 
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Basic Overriding Example 

• Car class overrides Upgrade() 
void Car::Upgrade() 

{ 

  // entirely new Car-only code 

} 

 

• when Upgrade() is called on a object of type 
Car, the Car::Upgrade() function is invoked 
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Overriding (and Calling) Example 

• Car class overrides and calls PrintSpecs() 
void Car::PrintSpecs() 

{ 

  Vehicle::PrintSpecs(); 

  // additional Car-only code 

} 

 

• can explicitly call a parent’s original function 
by using the scope resolution operator 
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Attempted Overloading Example 

• Car class attempts to overload the function 
Move(double distance) with new parameters 
void Car::Move(double distance, 

               double avgSpeed) 

{ 

  // new overloaded Car-only code 

} 
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Attempted Overloading Example 

• Car class attempts to overload the function 
Move(double distance) with new parameters 
void Car::Move(double distance, 

               double avgSpeed) 

{ 

  // new overloaded Car-only code 

} 

 

• but this does something we weren’t expecting! 
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Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 
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Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 

 

• declaring     Car::Move(2 parameters) 
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Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 

 

• declaring     Car::Move(2 parameters) 

• overrides Vehicle::Move(1 parameter) 
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Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 

 

• declaring     Car::Move(2 parameters) 

• overrides Vehicle::Move(1 parameter) 

 

• we no longer have access to the original  
Move() function from the Vehicle class 
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Overloading in Child Class 

• to overload, we must have both original and  
overloaded functions in child class 
void Car::Move(double distance); 

void Car::Move(double distance, 

               double avgSpeed); 

 

• the “original” one parameter function  
can then explicitly call parent function 
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Livecoding 

• let’s change the PrintX() functions to be an 
overridden member function 

 

• we’ll have one of each “type”: 

– basic (complete override) 

– override and call 

– override and overload 

88 
LIVECODING LIVECODING 
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Homework 6 

• check validity of input values 

• acceptable does not mean guaranteed! 

 

• be extra careful with following the coding 
standards, and making appropriate decisions 

– explain in your README.txt 

 

• any questions? 
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Project 

• groups are due today on Piazza 

– if you haven’t posted your group by 9 PM  
tonight, I will assign them for you! 

 

• proposal due next week in class 

• alphas are due November 23rd 
 

•  IMPORTANT!!!: we will be grading the  
 most recent submission from your group 
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Project 

• proposal due next week in class 

• alphas due 1 ½ weeks after proposal 

 

• please don’t turn in anything late! 

 

• will grade last submission from group 
members for alpha and project 
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