
CIS 190: C/C++ Programming 

Lecture 10 

Inheritance 

1 



Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

2 



Code Reuse 

• important to successful coding 

 

• efficient 

– no need to reinvent the wheel 

• error free (more likely to be) 

– code has been previously used/test 

 

 

 

 

 

3 



Code Reuse Examples 

• What are some ways we reuse code? 

 

 

 

 

• Any specific examples? 

4 



Code Reuse Examples 

• What are some ways we reuse code? 

– functions 

– classes 

 

 

• Any specific examples? 

– calling Insert() and a modified Delete() for Move() 

– calling accessor functions inside a constructor 

 
5 



Code Reuse Examples 

• What are some ways we reuse code? 

– functions 

– classes 

– inheritance – what we’ll be covering today 

 

• Any specific examples? 

– calling Insert() and a modified Delete() for Move() 

– calling accessor functions inside a constructor 

 
6 



Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

 7 



Refresher on Objects 

• objects are what we call an instance of a class 

 

• for example: 

– Rectangle is a class 

– r1 is a variable of type Rectangle 

– r1 is a Rectangle object 
 

 

 

 

 

 

 

8 



Object Relationships 

• two types of object relationships 

 

• is-a 

– inheritance 

 

• has-a 

– composition 

– aggregation 

 

both are forms 
of association 

9 



Inheritance Relationship 

a Car is-a Vehicle 
 

 

• this is called inheritance 

 

10 



Inheritance Relationship 

a Car is-a Vehicle 
 

• the Car class inherits from the Vehicle class 

 

• Vehicle is the general class, or the parent class 

• Car is the specialized class, or child class, that 
inherits from Vehicle 

 
11 



Inheritance Relationship Code 

class Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numAxles; 

    int    m_numWheels; 

    int    m_maxSpeed; 

    double m_weight; 

    // etc 

} ; 

 

12 



Inheritance Relationship Code 

class Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numAxles; 

    int    m_numWheels; 

    int    m_maxSpeed; 

    double m_weight; 

    // etc 

} ; 

 

13 

all Vehicles have 
axles, wheels, a 
max speed, and a 
weight 



Inheritance Relationship Code 

class Car { 

   

 

 

 

 

 

 

 

} ; 

 

14 



Inheritance Relationship Code 

class Car: public Vehicle { 

   

 

 

 

 

 

 

 

} ; 

 

15 

Car inherits from 
the Vehicle class 



Inheritance Relationship Code 

class Car: public Vehicle { 

   

 

 

 

 

 

 

 

} ; 

 

16 

Car inherits from 
the Vehicle class 

don’t forget the 
colon here! 



Inheritance Relationship Code 

class Car: public Vehicle { 

  public: 

    // functions 

  private: 

    int    m_numSeats; 

    double m_MPG; 

    string m_color; 

    string m_fuelType; 

    // etc 

} ; 

 

17 

all Cars have a 
number of seats, a 
MPG value, a color, 
and a fuel type 



Inheritance Relationship Code 

class Car:  

  public Vehicle { /*etc*/ }; 

18 



Inheritance Relationship Code 

class Car:  

  public Vehicle { /*etc*/ }; 

class Plane:  

  public Vehicle { /*etc*/ }; 

class SpaceShuttle:  

  public Vehicle { /*etc*/ }; 

class BigRig:  

  public Vehicle { /*etc*/ }; 

19 



Composition Relationship 

a Car has-a Chassis 
 

 

• this is called composition 

20 



Composition Relationship 

a Car has-a Chassis 
 

• the Car class contains an object of type Chassis 

 

• a Chassis object is part of the Car class 

• a Chassis cannot “live” out of context of a Car 

– if the Car is destroyed, the Chassis is also destroyed 

21 



Composition Relationship Code 

class Chassis { 

  public: 

    //functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 

 

22 



Composition Relationship Code 

class Chassis { 

  public: 

    //functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 

 

23 

all Chassis have 
a material, a 
weight, and a 
maxLoad they 
can hold 



Composition Relationship Code 

class Chassis { 

  public: 

    //functions 

  private: 

    string m_material; 

    double m_weight; 

    double m_maxLoad; 

    // etc 

} ; 

 

24 

also, notice 
that there is 
no inheritance 
for the Chassis 
class 



Composition Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

     

 

} ; 

 

25 



Composition Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

    // has-a (composition) 

    Chassis m_chassis; 

} ; 

 

26 



Aggregation Relationship 

a Car has-a Driver 
 

 

• this is called aggregation 

 

 

 

 
27 



Aggregation Relationship 

a Car has-a Driver 
 

• the Car class is linked to an object of type Driver 

 

• Driver class is not directly related to the Car class 

• a Driver can live out of context of a Car 

• a Driver must be “contained” in the Car  
object via a pointer to a Driver object 

28 



Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 

 
29 



Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 

 
30 

Driver itself is a child 
class of Person 



Aggregation Relationship Code 

class Driver: public Person { 

  public: 

    // functions 

  private: 

    Date   m_licenseExpire; 

    string m_licenseType; 

    // etc 

} ; 

 
31 

Driver inherits all of Person’s member variables 
(Date m_age, string m_name, etc.) so they 
aren’t included in the Driver child class 

Driver itself is a child 
class of Person 



Aggregation Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

     

 

} ; 

 

32 



Aggregation Relationship Code 

class Car: public Vehicle { 

  public: 

    //functions 

  private: 

    // member variables, etc. 

 

    // has-a (aggregation) 

    Person *m_driver; 

} ; 

 

33 



Visualizing Object Relationships 

• on paper, draw a representation of how the 
following objects relate to each other 

• make sure the type of relationship is clear 

 

34 

• Engine 
• Driver 
• Person 
• Owner 
• Chassis 

• Car 
• Vehicle 
• BigRig 
• Rectangle 
• SpaceShuttle 



Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

 35 



Inheritance Access Specifiers 

• inheritance can be done via public, private, or 
protected 

• we’re going to focus exclusively on public 
 

• you can also have multiple inheritance 

– where a child class has more than one parent 

• we won’t be covering this 

36 



Hierarchy Example 

Vehicle 

37 



Hierarchy Example 

Vehicle 

etc. Car Plane BigRig 

38 



Hierarchy Example 

Vehicle 

SUV 

etc. 

Sedan 

Car Plane BigRig 

Jeep Van 

39 



Hierarchy Example 

Vehicle 

SUV 

etc. 

Sedan 

Car Plane BigRig 

Jeep Van 

Sp
e

ci
al

iz
at

io
n

 

40 



Hierarchy Vocabulary 

• more general class (e.g., Vehicle) can be called: 

– parent class 

– base class 

– superclass 

• more specialized class (e.g., Car) can be called: 

– child class 

– derived class 

– subclass 

 
41 



Hierarchy Details 

• parent class contains all that is common among 
its child classes (less specialized) 

– Vehicle has a maximum speed, a weight, etc. 
because all vehicles have these 

 

• member variables and functions of the parent 
class are inherited by all of its child classes 

 

42 



Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

43 



Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• use 

– the child class takes advantage of the parent class 
behaviors exactly as they are 

• like the mutators and accessors from the parent class 

44 



Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• extend 

– the child class creates entirely new behaviors 
• a RepaintCar() function for the Car child class 

• mutators/accessors for new member variables 

45 



Hierarchy Details 

• child classes can use, extend, or replace the 
parent class behaviors 

 

• replace 

– child class overrides parent class’s behaviors 

• (we’ll cover this later today) 

46 



Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

 47 



What is Inherited 

Vehicle Class 

48 



What is Inherited 

Vehicle Class 

• public fxns&vars 

49 



What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 

50 



What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 

51 



What is Inherited 

Vehicle Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

52 



What is Inherited 
Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 

53 



What is Inherited 
Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 

54 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public fxns&vars 
• protected fxns&vars 
• private variables 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

Vehicle Class 

55 

• child class 
members 
(functions  

& variables) ? 



What is Inherited 
Car Class 

• public  
fxns&vars 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

56 

 
• protected fxns&vars 
• private variables 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• child class 
members 
(functions  

& variables) 

• public  
fxns&vars 

• protected  
fxns&vars 

 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

57 

 
 

• private variables 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

58 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

59 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

60 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

61 

• child class 
members 
(functions  

& variables) 



What is Inherited 
Car Class 

• public  
fxns&vars 

• protected  
fxns&vars 

 
• private  

variables 

Vehicle Class 

not (directly) accessible  
by Car objects 

• private functions 
• copy constructor 
• assignment operator 
• constructor 
• destructor 

can access and invoke, but 
are not directly inherited 62 

• child class 
members 
(functions  

& variables) 



Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

 63 



Handling Access 

• child class has access to parent class’s: 

– public member variables/functions 

– protected member variables/functions 
 

64 



Handling Access 

• child class has access to parent class’s: 

– public member variables/functions 

– protected member variables/functions 
 

– but not private member variables/functions 

 

65 



Handling Access 

• child class has access to parent class’s: 

– public member variables/functions 

– protected member variables/functions 
 

– but not private member variables/functions 

 

• how should we set the access modifier for 
parent member variables we want the child 
class to be able to access? 

66 



Handling Access 

• we should not make these variables protected! 

 

• leave them private! 

67 



Handling Access 

• we should not make these variables protected! 

 

• leave them private! 

• instead, child class uses protected functions 
when interacting with parent variables 

– mutators 

– accessors 

68 



Livecoding 

• let’s look more closely at inheritance 

 

• with these classes: 

– Shape 

• Rectangle 

• Pentagon 

• Circle 

69 
LIVECODING LIVECODING 



Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

70 



Specialization 

• child classes are meant to be  
more specialized than parent classes 

– adding new member functions 

– adding new member variables 

 

• child classes can also specialize by overriding 
parent class member functions 

– child class uses exact same function signature 

71 



Overloading vs Overriding  

• overloading 

– ??? 

72 



Overloading vs Overriding  

• overloading 

– use the same function name, but with different 
parameters for each overloaded implementation 

 

73 



Overloading vs Overriding  

• overloading 

– use the same function name, but with different 
parameters for each overloaded implementation 

 

• overriding 

– ??? 

74 



Overloading vs Overriding  

• overloading 

– use the same function name, but with different 
parameters for each overloaded implementation 

 

• overriding 

– use the same function name and parameters, but 
with a different implementation 

– child class method “hides” parent class method 

– only possible by using inheritance 

75 



Overriding Examples 

• for these examples, the Vehicle class now 
contains these public functions: 
void Upgrade(); 

void PrintSpecs(); 

void Move(double distance); 

 

76 



Overriding Examples 

• for these examples, the Vehicle class now 
contains these public functions: 
void Upgrade(); 

void PrintSpecs(); 

void Move(double distance); 

 

• Car class inherits all of these public functions 

– it can therefore override them 

77 



Basic Overriding Example 

• Car class overrides Upgrade() 
void Car::Upgrade() 

{ 

  // entirely new Car-only code 

} 

 

• when Upgrade() is called on a object of type 
Car, what happens? 

78 



Basic Overriding Example 

• Car class overrides Upgrade() 
void Car::Upgrade() 

{ 

  // entirely new Car-only code 

} 

 

• when Upgrade() is called on a object of type 
Car, the Car::Upgrade() function is invoked 

79 



Overriding (and Calling) Example 

• Car class overrides and calls PrintSpecs() 
void Car::PrintSpecs() 

{ 

  Vehicle::PrintSpecs(); 

  // additional Car-only code 

} 

 

• can explicitly call a parent’s original function 
by using the scope resolution operator 

80 



Attempted Overloading Example 

• Car class attempts to overload the function 
Move(double distance) with new parameters 
void Car::Move(double distance, 

               double avgSpeed) 

{ 

  // new overloaded Car-only code 

} 

 

81 



Attempted Overloading Example 

• Car class attempts to overload the function 
Move(double distance) with new parameters 
void Car::Move(double distance, 

               double avgSpeed) 

{ 

  // new overloaded Car-only code 

} 

 

• but this does something we weren’t expecting! 
82 



Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 

 

83 



Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 

 

• declaring     Car::Move(2 parameters) 

84 



Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 

 

• declaring     Car::Move(2 parameters) 

• overrides Vehicle::Move(1 parameter) 

 

85 



Precedence 

• overriding takes precedence over overloading 

– instead of overloading the Move() function, the 
compiler assumes we are trying to override it 

 

• declaring     Car::Move(2 parameters) 

• overrides Vehicle::Move(1 parameter) 

 

• we no longer have access to the original  
Move() function from the Vehicle class 

86 



Overloading in Child Class 

• to overload, we must have both original and  
overloaded functions in child class 
void Car::Move(double distance); 

void Car::Move(double distance, 

               double avgSpeed); 

 

• the “original” one parameter function  
can then explicitly call parent function 

 
87 



Livecoding 

• let’s change the PrintX() functions to be an 
overridden member function 

 

• we’ll have one of each “type”: 

– basic (complete override) 

– override and call 

– override and overload 

88 
LIVECODING LIVECODING 



Outline 

• Code Reuse 

• Object Relationships 

• Inheritance 

– What is Inherited 

– Handling Access 

• Overriding 

• Homework and Project 

 

 89 



Homework 6 

• check validity of input values 

• acceptable does not mean guaranteed! 

 

• be extra careful with following the coding 
standards, and making appropriate decisions 

– explain in your README.txt 

 

• any questions? 

90 



Project 

• groups are due today on Piazza 

– if you haven’t posted your group by 9 PM  
tonight, I will assign them for you! 

 

• proposal due next week in class 

• alphas are due November 23rd 
 

•  IMPORTANT!!!: we will be grading the  
 most recent submission from your group 

91 



Project 

• proposal due next week in class 

• alphas due 1 ½ weeks after proposal 

 

• please don’t turn in anything late! 

 

• will grade last submission from group 
members for alpha and project 

92 


