CIS 190: C/C++ Programming

Lecture 9

Vectors, Enumeration,
Overloading, and More!



Outline

Access Restriction
Vectors

Enumeration
Operator Overloading
New/Delete
Destructors
Homework & Project



Principle of Least Privilege

e whatis it?



Principle of Least Privilege

e every module

— process, user, program, etc.

* must have access only to the information and
resources

— functions, variables, etc.

* that are necessary for legitimate purposes
— (i.e., this is why variables are private)



Access Specifiers for Date Class

class Date {
public:
void OutputMonth() ;
int GetMonth() ;
int GetDay()
int GetYear();
void SetMonth (int m) ;
void SetDay (int d);
void SetYear (int y);
private:
int m month;
int m day;
int m year;

};



Access Specifiers for Date Class

class Date {

public:
void OutputMonth() ;
int GetMonth() ;
int GetDay();

int GetYear() ;
void SetMonth(int m) ;
void SetDay (int d);

should all of these
functions really be
publicly accessible?

void SetYear (int y);
private:

int m month;

int m day;

int m year;

};



Outline

Access Restriction
Vectors

Enumeration
Operator Overloading
New/Delete
Destructors
Homework & Project



Vectors

e similar to arrays, but much more flexible

— C++ will handle most of the “annoying” bits

e provided by the C++ Standard Template
Library (STL)

— must #include <vector> to use



Declaring a Vector

vector <int> intA;

— empty integer vector, called intA

intA



Declaring a Vector

vector <int> intB (10);

— integer vector with 10 integers,
initialized (by default) to zero

O 0 O O OO0 O

intB




Declaring a Vector

vector <int> intC (10, -1);
— integer vector with 10 integers,
initialized to -1
-1 -1 -1 -1 -1/ -1 -1 -1 -1 -1

11




Vector Assignment

* unlike arrays, can assign one vector to another
— even if they’re different sizes
— as long as they’re the same type

intA = intB;



Vector Assignment

* unlike arrays, can assign one vector to another
— even if they’re different sizes
— as long as they’re the same type

intA = intB;

size0  size 10 (intA is now 10 elements too)



Vector Assignment

* unlike arrays, can assign one vector to another
— even if they’re different sizes
— as long as they’re the same type

intA = intB;

size0  size 10 (intA is now 10 elements too)

O 0 0 O O 0 0 O o]|O
intA




Vector Assignment

* unlike arrays, can assign one vector to another
— even if they’re different sizes
— as long as they’re the same type

intA = intB;
size0  size 10 (intA is now 10 elements too)
intA = charA;



Vector Assignment

* unlike arrays, can assign one vector to another
— even if they’re different sizes
— as long as they’re the same type

intA intB;

size0  size 10 (intA is now 10 elements too)

intA = charA;
NOT okay!



Copying Vectors

* can create a copy of an existing
vector when declaring a new vector

vector <int> intD (intC);

-1

-1

-1

-1

-1

-1

17



Copying Vectors

* can create a copy of an existing
vector when declaring a new vector

vector <int> intD (intC);

-1 -1 -1 -1-1-1 -1 -1 -1 -1
intC
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1




Accessing Vector Members

e we have two different methods available

* square brackets:
intB[2] = 7;

e .at () operation:
intB.at(2) = 7;



Accessing Vector Members with []

e function just as they did with arrays in C
for (i = 0; i < 10; i++) {
intB[1] = 1; }



Accessing Vector Members with []

e function just as they did with arrays in C
for (i = 0; i < 10; i++) {
intB[1] = 1; }

O 1 2|3 4 5 6|7 8 9
intB




Accessing Vector Members with []

e function just as they did with arrays in C
for (i = 0; i < 10; i++) {
intB[1] = 1; }

O 1 2|3 4 5 6|7 8 9
intB

* but there is still no bounds checking
— going out of bounds may cause segfaults



Accessing Vector Members with .at ()

 the.at () operator uses bounds checking

* will throw an exception when out of bounds
— causes program to terminate
— we can handle it (with try-catch blocks)

 we’ll cover these later in the semester

* slower than [], but much safer



Passing Vectors to Functions

* unlike arrays, vectors are by default
passed by value to functions

— a copy is made, and that copy is passed to the
function

— changes made do not show in main()

* but we can explicitly pass vectors by reference



Passing Vectors by Reference

* to pass vectors by reference, nothing changes in
the function call:

// function call:

// good for passing by wvalue

// and for passing by reference
ModifyV (refVector)

* which is really handy! (but can also cause
confusion about what’s going on, so be careful)



Passing Vectors by Reference

* but to pass a vector by reference, we do
need to change the function prototype:

// function prototype
// for passing by value
void ModifyV (vector < int > ref);

 what do you think needs to change?

26



Passing Vectors by Reference

* but to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector&< int > ref);
void ModifyV (vector <&int > ref);
void ModifyV (vector < inté&> ref);
void ModifyV (vector < int > &ref);
void ModifyV (vectoré&<&inté&> &ref);

 what do you think needs to change?

27



Passing Vectors by Reference

* but to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector < int > &ref);

28



Multi-Dimensional Vectors

e 2-dimensional vectors are essentially
“a vector of vectors”

vector < vector <char> > charVec;

29



Multi-Dimensional Vectors

e 2-dimensional vectors are essentially
“a vector of vectors”

vector < vector <char> > charVec;

1

this space in between the two
closing >’ characters is required

by many implementations of C++



Accessing Elements in 2D Vectors

* to access 2D vectors, just chain accessors:

* square brackets:
intB[2] [3] = 7;

 .at() operator:
intB.at(2) .at(3) = 7;



Accessing Elements in 2D Vectors

* to access 2D vectors, just chain accessors:

o , you should be using
square brackets: the .at () operator

intB[2][3] = 7; though, since it is
much safer than []

e .at() operator: /

intB.at(2) .at(3) = 7;



resize()

void resize (n, val);

33



resize()

void resize (n, val);

e nisthe new size of the vector

— if larger than current
* vector size is expanded
— if smaller than current
e vector is reduced to first n elements



resize()

void resize (n, val);

e val is an optional value

— used to initialize any new elements

* if not given, the default constructor is used



Using resize()

* if we declare an empty vector, one way we can
change it to the size we want is resize ()

vector < string > stringVec;

stringVec.resize (9) ;

36



Using resize()

* if we declare an empty vector, one way we can
change it to the size we want is resize ()

vector < string > stringVec;

stringVec.resize (9) ;

— or, if we want to initialize the new elements:

stringVec.resize (9, “hello!”);

37



push back()

e add a new element at the end of a vector

void push back (val);

38



push back()

e add a new element at the end of a vector

void push back (val);

e val is the value of the new element that will
be added to the end of the vector

charVec.push back(‘a’);



resize() vs push back()

e resize () is best used when you know the
exact size a vector needs to be

* push back () is best used when elements
are added one by one



resize() vs push back()

e resize () is best used when you know the
exact size a vector needs to be

— like when you have the exact number of
songs a singer has in their repertoire

* push back () is best used when elements
are added one by one



resize() vs push back()

e resize () is best used when you know the
exact size a vector needs to be

— like when you have the exact number of
songs a singer has in their repertoire

* push back () is best used when elements

are added one by one
— like when you are getting train cars from a user



size()

* unlike arrays, vectors in C++ “know” their size

— due to C++ managing vectors for you

e size () returns the number of elements in
the vector it is called on
— does not return an integer!
— you will need to cast it



Using size()
int cSize;

// this will not work

cSize = charVec.size () ;

44



Using size()
int cSize;

// this will not work

cSize = charVec.size () ;

//you must cast the return type

cSize = (int) charVec.size() ;

45



Livecoding

* |let’s apply what we’ve learned about vectors

e declaration of multi-dimensional vectors
e .at() operator

* resize(), push_back()

e size()

LIVECODING



Outline

Access Restriction
Vectors

Enumeration
Operator Overloading
New/Delete
Destructors
Homework & Project

47



Enumeration

* enumerations are a type of variable used to
set up collections of named integer constants

e useful for “lists” of values that are tedious to
implement using #define or const

#define WINTER O
#define SPRING 1
#define SUMMER 2
#define FALL 3



Enumeration Types

* two types of enum declarations:

* hamed type

enum seasons {WINTER, SPRING,
SUMMER, FALL};

* unnamed type

enum {WINTER, SPRING,
SUMMER, FALL};

49



Named Enumerations

* named types allow you to create variables of
that type, use it in function arguments, etc.

// declare a variable of

// the enumeration type seasons
// called currentSemester

enum seasons currentSemester;

currentSemester = FALL;

50



Unnamed Enumerations

 unnamed types are useful for naming
constants that won’t be used as variables



Unnamed Enumerations

 unnamed types are useful for naming
constants that won’t be used as variables

int userChoice;
cout << "“Please enter season: ”;
cin >> userChoice;
switch (userChoice) {
case WINTER:
cout << “brr!'”; /* etc */

52



Benefits of Enumeration

* hamed enumeration types allow you to
restrict assignments to only valid values

— a ‘seasons’ variable cannot have a value other
than those in the enum declaration

* unnamed types allow simpler management of
a large list of constants, but don’t prevent
invalid values from being used



Outline

Access Restriction
Vectors

Enumeration
Operator Overloading
New/Delete
Destructors
Homework & Project

54



Function Overloading

 |ast class, covered overloading constructors:
Date: :Date (int m, int 4, int v);
Date: :Date (int m, int d4d);
Date: :Date ()

e and overloading other functions:
void PrintMessage (void) ;
void PrintMessage (string msgqg) ;

55



Operators

* given variable types have predefined behavior
for operators like +, =, ==, and more

* for example:

stringP = stringQ;

1f (charX == charY) {
intA = intB + 1intC;
intD += intE;



Operators

* would be nice to have these operators also
work for user-defined variables, like classes

e we could even have them as member
functions!

— allows access to member variables and functions
that are set to private

 this is all possible via operator overloading



Overloading Restrictions

e cannotoverload ::, ., *, or °?
e cannot create new operators

* overload-able operators include

=, >, <<, ++, —--, +=, +,
<I >I <=I >=I ==I !=I []



Why Overload?

* |et’s say we have a Money class:

class Money {
public: /* etc */
private:

int m dollars;

int m;cents;

} o

59



Why Overload?

* and we have two Money objects:

Money cash (700, 65);
Money bills (99, 85);

60



Why Overload?

* and we have two Money objects:

// we have $700.65 in cash, and
// need to pay $99.85 for bills
Money cash (700, 65);
Money bills (99, 85);

61



Why Overload?

* and we have two Money objects:

// we have $700.65 in cash, and
// need to pay $99.85 for bills
Money cash (700, 65);
Money bills (99, 85);

 what happens if we do the following?
cash = cash - bills;

62



Why Overload?

* and we have two Money objects:

// we have $700.65 in cash, and
// need to pay $99.85 for bills

Money cash (700, 65) ; |cashisnow 601

Money bills (99, 85); dollars and -20
cents, or $601.-20

 what happens if we do the following?
cash = cash - bills;

63




Why Overload?

e that doesn’t make any sense!
* what’s going on?



Why Overload?

* the default subtraction operator provided by
the compiler only works on a naive level

—subtractsbills.m dollars from
cash.m dollars

— and subtracts bills .m_cents from
cash.m_cents



Why Overload?

* the default subtraction operator provided by
the compiler only works on a naive level

—subtractsbills.m dollars from
cash.m dollars

— and subtracts bills .m_cents from
cash. m cents

e this isn’t what we want!

— so we must write our own subtraction operator



Operator Overloading Prototype

Money operator- (const Money é&amount2);



Operator Overloading Prototype

Money operator- (const Money é&amount2);

we’re returning
an object of
the class type



Operator Overloading Prototype

Money operator- (const Money é&amount2);

this tells the
compiler that
we are
overloading
an operator

we’re returning
an object of
the class type



Operator Overloading Prototype

Money operator- (const Money é&amount2);

this tells the
compiler that
we are
overloading
an operator

we’re returning and that it’s
an object of the subtraction
the class type operator



Operator Overloading Prototype

Money operator- (const Money é&amount2);

S

this tells the we’re passing in a
compiler that Money object

we are

overloading

an operator

we’re returning and that it’s
an object of the subtraction
the class type operator



Operator Overloading Prototype

Money operator- (const Money é&amount2);

\_Y_I

this tells the we’re passing in a
compiler that Money object as a
we are const

overloading

an operator

we’re returning and that it’s
an object of the subtraction
the class type operator

72



Operator Overloading Prototype

Money operator- (const Money é&amount2);

\_Y_I

this tells the we’re passing in a
compiler that Money object as a
we are const and by
overloading reference

an operator

we’re returning and that it’s
an object of the subtraction
the class type operator

73



Operator Overloading Prototype

Money operator- (const Money é&amount2);

\_Y_,

this tells the we’re passing in a
compiler that Money object as a
we are const and by
overloading reference

an operator

why would we
want to do that?

we’re returning and that it’s
an object of the subtraction
the class type operator



Operator Overloading Definition

Money operator- (const Money &amount2)

{

int dollarsRet, centsRet;

int total, minusTotal;
// how would you solve this?

return Money (dollarsRet, centsRet);



When to Overload Operators

* do the following make sense as operators?
(1) today = today + tomorrow;

(2) if (today == tomorrow)



When to Overload Operators

* do the following make sense as operators?
(1) today = today + tomorrow;

(2) if (today == tomorrow)

* only overload an operator for a class that
“makes sense” for that class

— otherwise it can be confusing to the programmer

* use your best judgment



Outline

Access Restriction
Vectors

Enumeration
Operator Overloading
New/Delete
Destructors
Homework & Project

78



new and delete

* replacemalloc () and free () fromC

— keywords instead of functions

e don’t need them for vectors

— vectors can change size dynamically

* mostly used for
— dynamic data structures (linked list, trees, etc.)
— pointers



Using new and delete

Date *datePtrl, *datePtr2;
datePtrl = new Date;
datePtr2 new Date(7,4);

delete datePtrl;
delete datePtr2;

80



Managing Memory in C++

* just as important as managing memory in C!!!

e just because new and delete are easier to
use thanmalloc and free, doesn’t mean

they can’t be prone to the same errors
— “losing” pointers

— memory leaks

— when memory should be deleted (freed)



Outline

Access Restriction
Vectors

Enumeration
Operator Overloading
New/Delete
Destructors
Homework & Project

82



Refresher on Constructors

* special member functions used to create
(or “construct”) new objects

e automatically called when an object is created
— implicit: Money cash;

— explicit: Money bills (89, 40);

e initializes the values of all data members



Destructors

* destructors are the opposite of constructors

e they are used when delete() is called on an
instance of a user-created class

e compiler automatically provides one for you

— but it does not take into account dynamic memory



Destructor Example

* |let’s say we have a new member variable of our
Date class called ‘m next holiday’

— pointer to a string with the name of the next holiday

class Date {

private:
int m month;
int m day;
int m year;

string *m next holiday ;

85



Destructor Example

* we will need to update the constructor

Date::Date (int m, int d, int vy,
string next holiday) ({

SetMonth (m) ;

SetDay (d) ;

SetYear (y) ;

m next holiday = new string;

*m next holiday = next holiday;

86



Destructor Example

* we will need to update the constructor

Date::Date (int |What other changes do
stri/we need to make to a

SetMonth (m) ; |class when adding a
SetDay (d) ; new member variable?
SetYear (y) ;

m next holiday = new string;

*m next holiday = next holiday;



Destructor Example

e we also now need to create a destructor of
our own:

~Date () ; // our destructor

e destructors must have a tilde in front
e |ike a constructor:

— it has no return type
— same name as the class



Basic Destructor Definition

* the destructor needs to free any dynamically
allocated memory

e most basic version of a destructor

Date: :~Date () {
delete m next holiday;

}



ldeal Destructor Definition

* clears all information and sets pointers to NULL

Date: :~Date () {
// clear member variable info

m day m month = m year = 0;

*m next holiday = “7;
// free and set pointers to NULL
delete m next holiday;

m next holiday = NULL;



ldeal Destructor Definition

why aren’t we
using the mutator
functions here?

* clears all information and sets p

Date: :~Date () {
// clear member variable info

m day m month = m year = 0;

*m next holiday = “7;
// free and set pointers to NULL
delete m next holiday;

m next holiday = NULL;



Outline

Access Restriction
Vectors

Enumeration
Operator Overloading
New/Delete
Destructors
Homework & Project

92



Homework 6

e Classy Trains

— last homework!!!
e practice with implementing a C++ class

* more emphasis on:
— error checking
— code style and choices



Project

* final project will be due December 2nd

— two presentation days:
— December 2nd, 6-7:30 PM, Towne 100 (Tue)
— December 3rd, 1:30-3 PM, Towne 319 (Wed)

* you can’t use late days for project deadlines

* details will be up before next class



Project

e project must be completed in groups (of two)

— groups will be due October 29" on Piazza

— if you don’t have a group, you’ll be assigned one

 start thinking about:

No you want to work with
hat sort of project you want to do

hat you want to name your group



