
CIS 190: C/C++ Programming

Lecture 9

Vectors, Enumeration,
Overloading, and More!

1

Outline

• Access Restriction

• Vectors

• Enumeration

• Operator Overloading

• New/Delete

• Destructors

• Homework & Project

2

Principle of Least Privilege

• what is it?

3

Principle of Least Privilege

• every module

– process, user, program, etc.

• must have access only to the information and
resources

– functions, variables, etc.

• that are necessary for legitimate purposes

– (i.e., this is why variables are private)

4

Access Specifiers for Date Class

class Date {

public:

 void OutputMonth();

 int GetMonth();

 int GetDay();

 int GetYear();

 void SetMonth(int m);

 void SetDay (int d);

 void SetYear (int y);

private:

 int m_month;

 int m_day;

 int m_year;

};

 5

Access Specifiers for Date Class

class Date {

public:

 void OutputMonth();

 int GetMonth();

 int GetDay();

 int GetYear();

 void SetMonth(int m);

 void SetDay (int d);

 void SetYear (int y);

private:

 int m_month;

 int m_day;

 int m_year;

};

 6

should all of these
functions really be
publicly accessible?

Outline

• Access Restriction

• Vectors

• Enumeration

• Operator Overloading

• New/Delete

• Destructors

• Homework & Project

 7

Vectors

• similar to arrays, but much more flexible

– C++ will handle most of the “annoying” bits

• provided by the C++ Standard Template
Library (STL)

– must #include <vector> to use

8

Declaring a Vector

vector <int> intA;

– empty integer vector, called intA

9

intA

Declaring a Vector

vector <int> intB (10);

– integer vector with 10 integers,
initialized (by default) to zero

10

0 0 0 0 0 0 0 0 0 0

intB

Declaring a Vector

vector <int> intC (10, -1);

– integer vector with 10 integers,
initialized to -1

11

intC

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Vector Assignment

• unlike arrays, can assign one vector to another

– even if they’re different sizes

– as long as they’re the same type

intA = intB;

12

Vector Assignment

• unlike arrays, can assign one vector to another

– even if they’re different sizes

– as long as they’re the same type

intA = intB;

 size 0 size 10 (intA is now 10 elements too)

13

Vector Assignment

• unlike arrays, can assign one vector to another

– even if they’re different sizes

– as long as they’re the same type

intA = intB;

 size 0 size 10 (intA is now 10 elements too)

14

0 0 0 0 0 0 0 0 0 0

intA

Vector Assignment

• unlike arrays, can assign one vector to another

– even if they’re different sizes

– as long as they’re the same type

intA = intB;

 size 0 size 10 (intA is now 10 elements too)

intA = charA;

15

Vector Assignment

• unlike arrays, can assign one vector to another

– even if they’re different sizes

– as long as they’re the same type

intA = intB;

 size 0 size 10 (intA is now 10 elements too)

intA = charA;

 NOT okay!

16

Copying Vectors

• can create a copy of an existing
vector when declaring a new vector
vector <int> intD (intC);

17

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

intC

Copying Vectors

• can create a copy of an existing
vector when declaring a new vector
vector <int> intD (intC);

18

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

intC

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

intD

Accessing Vector Members

• we have two different methods available

• square brackets:
intB[2] = 7;

• .at() operation:

intB.at(2) = 7;

19

Accessing Vector Members with []

• function just as they did with arrays in C
for (i = 0; i < 10; i++) {

 intB[i] = i; }

20

Accessing Vector Members with []

• function just as they did with arrays in C
for (i = 0; i < 10; i++) {

 intB[i] = i; }

21

0 1 2 3 4 5 6 7 8 9

intB

Accessing Vector Members with []

• function just as they did with arrays in C
for (i = 0; i < 10; i++) {

 intB[i] = i; }

• but there is still no bounds checking

– going out of bounds may cause segfaults

22

0 1 2 3 4 5 6 7 8 9

intB

Accessing Vector Members with .at()

• the.at() operator uses bounds checking

• will throw an exception when out of bounds

– causes program to terminate

– we can handle it (with try-catch blocks)

• we’ll cover these later in the semester

• slower than [], but much safer

23

Passing Vectors to Functions

• unlike arrays, vectors are by default
 passed by value to functions

– a copy is made, and that copy is passed to the
function

– changes made do not show in main()

• but we can explicitly pass vectors by reference

 24

Passing Vectors by Reference

• to pass vectors by reference, nothing changes in
the function call:

// function call:

// good for passing by value

// and for passing by reference

ModifyV (refVector);

• which is really handy! (but can also cause
confusion about what’s going on, so be careful)

25

Passing Vectors by Reference

• but to pass a vector by reference, we do
need to change the function prototype:

// function prototype

// for passing by value

void ModifyV (vector < int > ref);

• what do you think needs to change?
26

Passing Vectors by Reference

• but to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector&< int > ref);

void ModifyV (vector <&int > ref);

void ModifyV (vector < int&> ref);

void ModifyV (vector < int > &ref);

void ModifyV (vector&<&int&> &ref);

• what do you think needs to change?
27

Passing Vectors by Reference

• but to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector < int > &ref);

28

Multi-Dimensional Vectors

• 2-dimensional vectors are essentially
“a vector of vectors”

vector < vector <char> > charVec;

29

Multi-Dimensional Vectors

• 2-dimensional vectors are essentially
“a vector of vectors”

vector < vector <char> > charVec;

this space in between the two
closing ‘>’ characters is required
by many implementations of C++

30

Accessing Elements in 2D Vectors

• to access 2D vectors, just chain accessors:

• square brackets:

intB[2][3] = 7;

• .at() operator:
intB.at(2).at(3) = 7;

31

Accessing Elements in 2D Vectors

• to access 2D vectors, just chain accessors:

• square brackets:

intB[2][3] = 7;

• .at() operator:
intB.at(2).at(3) = 7;

32

you should be using
the .at() operator
though, since it is
much safer than []

resize()

void resize (n, val);

33

resize()

void resize (n, val);

• n is the new size of the vector

– if larger than current

• vector size is expanded

– if smaller than current

• vector is reduced to first n elements

34

resize()

void resize (n, val);

• val is an optional value

– used to initialize any new elements

• if not given, the default constructor is used

35

Using resize()

• if we declare an empty vector, one way we can
change it to the size we want is resize()

vector < string > stringVec;

stringVec.resize(9);

36

Using resize()

• if we declare an empty vector, one way we can
change it to the size we want is resize()

vector < string > stringVec;

stringVec.resize(9);

– or, if we want to initialize the new elements:

stringVec.resize(9, “hello!”);

37

push_back()

• add a new element at the end of a vector

void push_back (val);

38

push_back()

• add a new element at the end of a vector

void push_back (val);

• val is the value of the new element that will
be added to the end of the vector

charVec.push_back(‘a’);

 39

resize() vs push_back()

• resize() is best used when you know the
exact size a vector needs to be

• push_back() is best used when elements
are added one by one

40

resize() vs push_back()

• resize() is best used when you know the
exact size a vector needs to be

– like when you have the exact number of
songs a singer has in their repertoire

• push_back() is best used when elements
are added one by one

41

resize() vs push_back()

• resize() is best used when you know the
exact size a vector needs to be

– like when you have the exact number of
songs a singer has in their repertoire

• push_back() is best used when elements
are added one by one

– like when you are getting train cars from a user

42

size()

• unlike arrays, vectors in C++ “know” their size

– due to C++ managing vectors for you

• size() returns the number of elements in
the vector it is called on

– does not return an integer!

– you will need to cast it

43

Using size()

int cSize;

// this will not work

cSize = charVec.size();

44

Using size()

int cSize;

// this will not work

cSize = charVec.size();

//you must cast the return type

cSize = (int) charVec.size();

45

Livecoding

• let’s apply what we’ve learned about vectors

• declaration of multi-dimensional vectors

• .at() operator

• resize(), push_back()

• size()

46
LIVECODING LIVECODING

Outline

• Access Restriction

• Vectors

• Enumeration

• Operator Overloading

• New/Delete

• Destructors

• Homework & Project

 47

Enumeration

• enumerations are a type of variable used to
set up collections of named integer constants

• useful for “lists” of values that are tedious to
implement using #define or const

#define WINTER 0

#define SPRING 1

#define SUMMER 2

#define FALL 3

48

Enumeration Types

• two types of enum declarations:

• named type
enum seasons {WINTER, SPRING,

 SUMMER, FALL};

• unnamed type
enum {WINTER, SPRING,

 SUMMER, FALL};

 49

Named Enumerations

• named types allow you to create variables of
that type, use it in function arguments, etc.

// declare a variable of

// the enumeration type seasons

// called currentSemester

enum seasons currentSemester;

currentSemester = FALL;

50

Unnamed Enumerations

• unnamed types are useful for naming
constants that won’t be used as variables

51

Unnamed Enumerations

• unnamed types are useful for naming
constants that won’t be used as variables

int userChoice;

cout << “Please enter season: ”;

cin >> userChoice;

switch(userChoice) {

case WINTER:

 cout << “brr!”; /* etc */

}

 52

Benefits of Enumeration

• named enumeration types allow you to
restrict assignments to only valid values

– a ‘seasons’ variable cannot have a value other
than those in the enum declaration

• unnamed types allow simpler management of
a large list of constants, but don’t prevent
invalid values from being used

53

Outline

• Access Restriction

• Vectors

• Enumeration

• Operator Overloading

• New/Delete

• Destructors

• Homework & Project

54

Function Overloading

• last class, covered overloading constructors:

• and overloading other functions:
 void PrintMessage (void);

 void PrintMessage (string msg);

55

Operators

• given variable types have predefined behavior
for operators like +, -, ==, and more

• for example:

stringP = stringQ;

if (charX == charY) {

 intA = intB + intC;

 intD += intE;

}

56

Operators

• would be nice to have these operators also
work for user-defined variables, like classes

• we could even have them as member
functions!

– allows access to member variables and functions
that are set to private

• this is all possible via operator overloading
57

Overloading Restrictions

• cannot overload ::, . , *, or ? :

• cannot create new operators

• overload-able operators include
=, >>, <<, ++, --, +=, +,

<, >, <=, >=, ==, !=, []

58

Why Overload?

• let’s say we have a Money class:

class Money {

public: /* etc */

private:

 int m_dollars;

 int m_cents;

} ;

59

Why Overload?

• and we have two Money objects:

Money cash(700, 65);

Money bills(99, 85);

60

Why Overload?

• and we have two Money objects:

// we have $700.65 in cash, and

// need to pay $99.85 for bills

Money cash(700, 65);

Money bills(99, 85);

61

Why Overload?

• and we have two Money objects:

// we have $700.65 in cash, and

// need to pay $99.85 for bills

Money cash(700, 65);

Money bills(99, 85);

• what happens if we do the following?

cash = cash - bills;

62

Why Overload?

• and we have two Money objects:

// we have $700.65 in cash, and

// need to pay $99.85 for bills

Money cash(700, 65);

Money bills(99, 85);

• what happens if we do the following?

cash = cash - bills;

63

cash is now 601
dollars and -20
cents, or $601.-20

Why Overload?

• that doesn’t make any sense!

• what’s going on?

64

Why Overload?

• the default subtraction operator provided by
the compiler only works on a naïve level

– subtracts bills.m_dollars from
 cash.m_dollars

– and subtracts bills.m_cents from
 cash.m_cents

65

Why Overload?

• the default subtraction operator provided by
the compiler only works on a naïve level

– subtracts bills.m_dollars from
 cash.m_dollars

– and subtracts bills.m_cents from
 cash.m_cents

• this isn’t what we want!

– so we must write our own subtraction operator

66

Operator Overloading Prototype

Money operator- (const Money &amount2);

67

Operator Overloading Prototype

Money operator- (const Money &amount2);

68

we’re returning
an object of
the class type

Operator Overloading Prototype

Money operator- (const Money &amount2);

69

we’re returning
an object of
the class type

this tells the
compiler that
we are
overloading
an operator

Operator Overloading Prototype

Money operator- (const Money &amount2);

70

we’re returning
an object of
the class type

this tells the
compiler that
we are
overloading
an operator

and that it’s
the subtraction
operator

Operator Overloading Prototype

Money operator- (const Money &amount2);

71

we’re returning
an object of
the class type

this tells the
compiler that
we are
overloading
an operator

and that it’s
the subtraction
operator

we’re passing in a
Money object

Operator Overloading Prototype

Money operator- (const Money &amount2);

72

we’re returning
an object of
the class type

this tells the
compiler that
we are
overloading
an operator

and that it’s
the subtraction
operator

we’re passing in a
Money object as a
const

Operator Overloading Prototype

Money operator- (const Money &amount2);

73

we’re returning
an object of
the class type

this tells the
compiler that
we are
overloading
an operator

and that it’s
the subtraction
operator

we’re passing in a
Money object as a
const and by
reference

Operator Overloading Prototype

Money operator- (const Money &amount2);

74

we’re returning
an object of
the class type

this tells the
compiler that
we are
overloading
an operator

and that it’s
the subtraction
operator

we’re passing in a
Money object as a
const and by
reference

why would we
want to do that?

Operator Overloading Definition

Money operator- (const Money &amount2)

{

 int dollarsRet, centsRet;

 int total, minusTotal;

 // how would you solve this?

 return Money(dollarsRet, centsRet);

}

75

When to Overload Operators

• do the following make sense as operators?
(1) today = today + tomorrow;

(2) if (today == tomorrow)

76

When to Overload Operators

• do the following make sense as operators?
(1) today = today + tomorrow;

(2) if (today == tomorrow)

• only overload an operator for a class that
“makes sense” for that class

– otherwise it can be confusing to the programmer

• use your best judgment

 77

Outline

• Access Restriction

• Vectors

• Enumeration

• Operator Overloading

• New/Delete

• Destructors

• Homework & Project

 78

new and delete

• replace malloc() and free() from C

– keywords instead of functions

• don’t need them for vectors

– vectors can change size dynamically

• mostly used for

– dynamic data structures (linked list, trees, etc.)

– pointers

79

Using new and delete

Date *datePtr1, *datePtr2;

datePtr1 = new Date;

datePtr2 = new Date(7,4);

delete datePtr1;

delete datePtr2;

80

Managing Memory in C++

• just as important as managing memory in C!!!

• just because new and delete are easier to
use than malloc and free, doesn’t mean
they can’t be prone to the same errors

– “losing” pointers

– memory leaks

– when memory should be deleted (freed)

81

Outline

• Access Restriction

• Vectors

• Enumeration

• Operator Overloading

• New/Delete

• Destructors

• Homework & Project

 82

Refresher on Constructors

• special member functions used to create
(or “construct”) new objects

• automatically called when an object is created

– implicit: Money cash;

– explicit: Money bills (89, 40);

• initializes the values of all data members

83

Destructors

• destructors are the opposite of constructors

• they are used when delete() is called on an
instance of a user-created class

• compiler automatically provides one for you

– but it does not take into account dynamic memory

84

Destructor Example

• let’s say we have a new member variable of our
Date class called ‘m_next_holiday’
– pointer to a string with the name of the next holiday

class Date {

private:

 int m_month;

 int m_day;

 int m_year;

 string *m_next_holiday ;

};

85

Destructor Example

• we will need to update the constructor

Date::Date (int m, int d, int y,

 string next_holiday) {

 SetMonth(m);

 SetDay(d);

 SetYear(y);

 m_next_holiday = new string;

 *m_next_holiday = next_holiday;

}

86

Destructor Example

• we will need to update the constructor

Date::Date (int m, int d, int y,

 string *next_holiday) {

 SetMonth(m);

 SetDay(d);

 SetYear(y);

 m_next_holiday = new string;

 *m_next_holiday = next_holiday;

}

87

what other changes do
we need to make to a
class when adding a
new member variable?

Destructor Example

• we also now need to create a destructor of
our own:

~Date(); // our destructor

• destructors must have a tilde in front

• like a constructor:

– it has no return type

– same name as the class

88

Basic Destructor Definition

• the destructor needs to free any dynamically
allocated memory

• most basic version of a destructor

Date::~Date() {

 delete m_next_holiday;

}

89

Ideal Destructor Definition

• clears all information and sets pointers to NULL

Date::~Date() {

 // clear member variable info

 m_day = m_month = m_year = 0;

 *m_next_holiday = “”;

 // free and set pointers to NULL

 delete m_next_holiday;

 m_next_holiday = NULL;

} 90

Ideal Destructor Definition

• clears all information and sets pointers to NULL

Date::~Date() {

 // clear member variable info

 m_day = m_month = m_year = 0;

 *m_next_holiday = “”;

 // free and set pointers to NULL

 delete m_next_holiday;

 m_next_holiday = NULL;

} 91

why aren’t we
using the mutator
functions here?

Outline

• Access Restriction

• Vectors

• Enumeration

• Operator Overloading

• New/Delete

• Destructors

• Homework & Project

92

Homework 6

• Classy Trains

– last homework!!!

• practice with implementing a C++ class

• more emphasis on:

– error checking

– code style and choices

93

Project

• final project will be due December 2nd

– two presentation days:

– December 2nd, 6-7:30 PM, Towne 100 (Tue)

– December 3rd, 1:30-3 PM, Towne 319 (Wed)

• you can’t use late days for project deadlines

• details will be up before next class

94

Project

• project must be completed in groups (of two)

– groups will be due October 29th on Piazza

– if you don’t have a group, you’ll be assigned one

• start thinking about:

– who you want to work with

– what sort of project you want to do

– what you want to name your group

95

