
CIS 190: C/C++ Programming 

Lecture 7 
C++ Streams 

1 



Outline 

• Handling Streams in C++ 

– Input Control 

– Output Control 

– String Streams 

• Errors in C++ 

• Header Protection 

• Homework 

2 



Using Input Streams 

• input streams include 

 

• istream 

– like reading in from the terminal 

• ifstream 

– like reading in from a file 

• istringstream 

– which we’ll cover later today 

 

 
3 



Using Input Streams 

• there are many ways to use input streams, 
with varying levels of precision/control 

– the >> operator 

– read() 

– ignore() 

– get() 

– getline() 

 

4 



Types of Whitespace 

• many of the input streams delineate using 
whitespace 

– they’ll skip leading whitespace 

– and stop at the next whitespace 

 

• common types of whitespace: 

– space, tab, newline 

– carriage return (\r) – can cause problems 

• sometimes used in Windows and Mac files 

5 



The >> Operator 

• returns a boolean for (un)successful read 
 

• just like scanf and fscanf: 

– skips leading whitespace 

– stops at the next whitespace 
(without reading it in) 

 

• appends a null terminator to strings read in 
 

 



The >> Operator: Example 

cout << “Please enter your first ” 

     << “and  last name separated ” 

     << “by a space: ”; 

cin >> firstName >> lastName; 

 

cout << “Please enter your age: ” 

cin >> age; 

 

 
7 



ignore() 

•  istream& ignore (streamsize n = 1, 

                  int delim    = EOF); 

 

• takes in: 

– an integer   (default value: 1) 

– a character delimiter (default value: EOF) 

 

• both arguments are optional 

 

 

 

8 



ignore() 

•  istream& ignore (streamsize n = 1, 

                  int delim    = EOF); 

 

• ignore extracts characters and discards them  
until either: 

– n characters are extracted 

– delim  is reached 

 

9 



ignore(): Example 

•  istream& ignore (streamsize n = 1, 

                  int delim    = EOF); 
 

iStream.ignore(); 

iStream.ignore(‘ ’); 

iStream.ignore(512); 

iStream.ignore(512, ‘ ’); 

 

 

 10 



read() 

•  istream& read (char* s, 

                streamsize n); 

 

• takes in: 

– a character array (a C string) 

– a size 
 

• streamsize is a typedef of a  
signed integral type 

11 



read() 

•  istream& read (char* s, 

                streamsize n); 

 

• copies a block of data of size n characters 

– stops after n characters, or at EOF 

– without checking its contents 

– without appending a NULL terminator 

– without moving through the input 

• often used in conjuction with ignore() 

12 



read(): Example 

•  istream& read (char* s, 

                streamsize n); 

 

char strArr[SIZE]; 

inStream.read(strArr, SIZE-1); 

/* do stuff with strArr */ 

// if you want to move on: 

inStream.ignore(SIZE-1); 

 

 

 

13 



get() 

•  istream& get (char &c); 

 

• takes in 

– a pointer to a character 
 

• stores a single character 

– does not skip whitespace 
 

cin.get(&character); 

14 



get() 

•  int      get (); 

 

• returns a single character 

– the ASCII value of the character read in 
 

character = cin.get(); 

 

15 



Multiple Prototypes 

• get() has two prototypes: 
int      get (); 

istream& get (char &c); 
 

• this is called overloading 

• many library functions are overloaded 

– which function is called depends on the arguments 
 

• you too can do this in C++ (we’ll cover it soon) 

16 



getline() 

•  istream& getline (char* s,  

                   streamsize n); 

 

• takes in: 

– a character array 

– a size 

• extracts up to n characters 

– stops extracting characters upon hitting ‘\n’ 

– also stops if it hits EOF 

 

 
17 



getline() 

•  istream& getline (char* s,  

                   streamsize n); 

 

• the newline is read in, and discarded 

– (not stored in the character array) 
 

• carriage returns can cause problems, so be 
aware of the file’s origin and format 

 

 
18 



getline(): Example 

•  istream& getline (char* s,  

                   streamsize n); 

 

char chArray [128]; 

streamIn.getline(chArray, 128-1); 

/* use “128-1” to leave room 

   for the null terminator */ 

 

 

 

 

19 



istream& ? 

•  istream& ignore (streamsize n = 1, 

                  int delim    = EOF); 

•  istream& read (char* s, 

                streamsize n); 

•  istream& get (char &c); 

•  istream& getline (char* s,  

                   streamsize n); 

 

 

 

 20 



istream& ? 

•  istream& ignore (streamsize n = 1, 

                  int delim    = EOF); 

•  istream& read (char* s, 

                streamsize n); 

•  istream& get (char &c); 

•  istream& getline (char* s,  

                   streamsize n); 

 

• all of these functions return a reference to an 
object of type istream 

 

 

21 



istream& 

• istream is the class type that all other input 
stream types are derived from 

– like cin and input files 
 

• the function is returning a reference to an 
object of type istream 

– references are kind of like pointers 
 

• we’ll cover this in more detail later 

 
22 



More Ways to Handle Input 

• cplusplus.com/reference/istream/istream/ 
– peek() 

– putback() 

– unget() 

– gcount() 

– tellg() 
 

• can be very useful, but make sure you know 
exactly what it’s doing before you use it 

 23 



Outline 

• Handling Streams in C++ 

– Input Control 

– Output Control 

– String Streams 

• Errors in C++ 

• Header Protection 

• Homework 

 

24 



Using Output Streams 

• output streams include 

 

• ostream 

– like printing out to the terminal 

• ofstream 

– like writing to a file 

• ostringstream 

– which we’ll cover later today 

 

 
25 



The <iomanip> Library 

• used to format output in C++ 
 

• can be used on any output stream 

– ostream  

– ofstream 

– ostringstream 

 

• must have #include <iomanip> 

 

 

 



IO Manipulation 

• iomanip replaces the formatting we did 
inside the printf() statements: 

 

printf(“it’ll %-6s for %07.3f hours\n”, 

       “rain”, 3.14159); 

> it’ll rain   for 003.142 hours 

 

• iomanip isn’t as compact as printf(), 
but it’s cleaner, and the code is clearer 

27 



The <iomanip> Library Functions 

• setw() 

– used to set width of field 

• setfill() 

– used to set a fill character (‘0’ or ‘  ’ or ‘_’, etc.) 

• setprecision() 

– used to set decimal precision 

• left and right 

– used to set alignment (not actually iomanip) 

28 



“Sticky” 

• most of the parametric manipulators are 
“sticky” – once they are set, those 
manipulations apply to all future parameters 
unless changed by another call 

– setfill(), setprecision(), and left/right 
 

• others only apply to the directly following 
output, and must be re-called each parameter 

– setw() 

29 



setw() 

• set the width of the next output 

– NOT “sticky” 

 

cout << “Hello” << setw(10)  

     << “world” << “.” << endl; 

 Hello     world. 

 

• will not cut off the output: input given is 
minimum amount of characters to be printed 

30 



setfill() 

• change padding character 

– ‘ ’ (space) is default padding character 

 

cout << setfill(‘-’) << setw(8)  

     << “hey” << endl; 

 -----hey 

 

• padding character is set until changed again 

– IS “sticky” 

 

 

31 



setprecision() 

• change maximum number of digits to display 

– numbers in total, not before or after decimal 
 

cout << setprecision(5)  

     << 3.1415926535 << endl; 

3.1416 

 

• precision holds for all future numbers 

– IS “sticky” 

32 



setprecision() 

• not affected by calls to setfill() 

• attempts to round, but it’s not always perfect 

– ints “behave” best, then doubles; floats are worst 
 

• an example: 

temp = 12.3456789 and test = 1234567.89 
 

cout << temp << “ and “ << test << endl; 

12.3457 and 1.23457e+06 

 

 33 



setprecision(): Example 

set precision: 1 

 1e+01 and 1e+06 

set precision: 2 

 12 and 1.2e+06 

set precision: 3 

 12.3 and 1.23e+06 

set precision: 9 

 12.3456789 and 1234567.89 

 

34 



setprecision(): Example 

set precision: 1 

 1e+01 and 1e+06 

set precision: 2 

 12 and 1.2e+06 

set precision: 3 

 12.3 and 1.23e+06 

set precision: 9 

 12.3456789 and 1234567.89 

set precision: 20 

 12.345678899999999345 and  

 1234567.8899999998976 

 35 



Alignment 

• in printf(), we used a negative to left align, 
since right align was always used by default 

– when using ostream, right is still default 
 

• instead we use keywords left and right 

– note that there are no parentheses 
(they are not functions) 

– IS “sticky” 

36 



Alignment: Example 

cout << setw(8) << “hello” << endl; 

cout << setw(8) << left << “cruel”  

     << endl; 

cout << setw(8) << right << “world”  

     << endl; 

 

   hello 

cruel 

   world 

37 



Livecoding iomanip Examples 

• we’ll be using iomanip to: 

 

– left and right align 

– adjust width 

– change precision 

– set fill characters 

 

38 
LIVECODING LIVECODING 



Outline 

• Handling Streams in C++ 

– Input Control 

– Output Control 

– String Streams 

• Errors in C++ 

• Header Protection 

• Homework 

 

39 



String Streams 

• allow us to use stream functions on strings 

– must have #include <sstream> 

 

• helpful for formatting strings 
 

• two types 
– ostringstream 

– istringstream 

40 



Using String Streams 

• istringstream is an input stream, so we 
can use any of the functions for input 
manipulation 

– read(), >>, ignore(), etc. 

 

• ostringstream is an output stream, so 
we can use any of the iomanip tools 

– setw(), setfill(), left, etc. 

 

 
41 



Common Uses for String Streams 

• use istringstream for 

– parsing a given string 

 

• use ostringstream for 

– creating a new string with specific formatting 

 

 

 

42 



The str() Function 

• two different prototypes for str() 
string str () const; 

void   str (const string& s); 

 

• another overloaded function 

– which version the program calls is  
determined by the arguments you pass in 

43 



Two Forms of str() 

string str () const; 

– converts from a string stream to a string  

 

 

void   str (const string& s); 

– converts from a string to a string stream 

 

 

 
44 



Using First Form of str() 

string str () const; 
 

• returns a string containing a copy of the 
current contents of the stream 

– converts from a string stream to a string  
 

newStr = oldStringStream.str(); 

 

45 



Using Second Form of str() 

void   str (const string& s); 
 

• wipes contents of string stream, and sets to 
the contents of the passed-in string 

– converts from a string to a string stream 
 

newStringStream.str(oldStr); 

newStringStream.str(“hello”); 

 
46 



Outline 

• Handling Streams in C++ 

– Input Control 

– Output Control 

– String Streams 

• Errors in C++ 

• Header Protection 

• Homework 

 

47 



Errors in C++ 

• are often MUCH longer than similar errors in C 

• makes it even more important to start with 
the very first error, all the way at the top 

 

• basic errors (typos, missing semicolons, etc.) 
remain largely the same 

 

48 



??? 

49 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:30:10: error: no match for 'operator<<' in 
'std::cin << fileName' 
recover.cpp:30:10: note: candidates are: 
In file included from /usr/include/c++/4.7/string:54:0, 
                 from 
/usr/include/c++/4.7/bits/locale_classes.h:42, 
                 from /usr/include/c++/4.7/bits/ios_base.h:43, 
                 from /usr/include/c++/4.7/ios:43, 
                 from /usr/include/c++/4.7/ostream:40, 
                 from /usr/include/c++/4.7/iostream:40, 
                 from recover.cpp:8: 
/usr/include/c++/4.7/bits/basic_string.h:2750:5: not 
[…] 

50 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:30:10: error: no match for 'operator<<' in 
'std::cin << fileName' 
recover.cpp:30:10: note: candidates are: 
In file included from /usr/include/c++/4.7/string:54:0, 
                 from 
/usr/include/c++/4.7/bits/locale_classes.h:42, 
                 from /usr/include/c++/4.7/bits/ios_base.h:43, 
                 from /usr/include/c++/4.7/ios:43, 
                 from /usr/include/c++/4.7/ostream:40, 
                 from /usr/include/c++/4.7/iostream:40, 
                 from recover.cpp:8: 
/usr/include/c++/4.7/bits/basic_string.h:2750:5: not 
[…] 

51 



Used << instead of >> 

recover.cpp: In function 'int main()': 
recover.cpp:30:10: error: no match for 'operator<<' in 
'std::cin << fileName' 
recover.cpp:30:10: note: candidates are: 
In file included from /usr/include/c++/4.7/string:54:0, 
                 from 
/usr/include/c++/4.7/bits/locale_classes.h:42, 
                 from /usr/include/c++/4.7/bits/ios_base.h:43, 
                 from /usr/include/c++/4.7/ios:43, 
                 from /usr/include/c++/4.7/ostream:40, 
                 from /usr/include/c++/4.7/iostream:40, 
                 from recover.cpp:8: 
/usr/include/c++/4.7/bits/basic_string.h:2750:5: not 
[…] 

52 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:22:3: error: 'string' was not declared in 
this scope 
recover.cpp:22:3: note: suggested alternative: 
In file included from 
/usr/include/c++/4.7/iosfwd:41:0, 
                 from /usr/include/c++/4.7/ios:39, 
                 from /usr/include/c++/4.7/ostream:40, 
                 from /usr/include/c++/4.7/iostream:40, 
                 from recover.cpp:8: 
/usr/include/c++/4.7/bits/stringfwd.h:65:33: 
note:   'std::string‘ 
[…] 

53 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:22:3: error: 'string' was not declared in 
this scope 
recover.cpp:22:3: note: suggested alternative: 
In file included from 
/usr/include/c++/4.7/iosfwd:41:0, 
                 from /usr/include/c++/4.7/ios:39, 
                 from /usr/include/c++/4.7/ostream:40, 
                 from /usr/include/c++/4.7/iostream:40, 
                 from recover.cpp:8: 
/usr/include/c++/4.7/bits/stringfwd.h:65:33: 
note:   'std::string‘ 
[…] 

54 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:22:3: error: 'string' was not declared in 
this scope 
recover.cpp:22:3: note: suggested alternative: 
In file included from 
/usr/include/c++/4.7/iosfwd:41:0, 
                 from /usr/include/c++/4.7/ios:39, 
                 from /usr/include/c++/4.7/ostream:40, 
                 from /usr/include/c++/4.7/iostream:40, 
                 from recover.cpp:8: 
/usr/include/c++/4.7/bits/stringfwd.h:65:33: 
note:   'std::string‘ 
[…] 

55 



Forgot using namespace std; 

recover.cpp: In function 'int main()': 
recover.cpp:22:3: error: 'string' was not declared in 
this scope 
recover.cpp:22:3: note: suggested alternative: 
In file included from 
/usr/include/c++/4.7/iosfwd:41:0, 
                 from /usr/include/c++/4.7/ios:39, 
                 from /usr/include/c++/4.7/ostream:40, 
                 from /usr/include/c++/4.7/iostream:40, 
                 from recover.cpp:8: 
/usr/include/c++/4.7/bits/stringfwd.h:65:33: 
note:   'std::string‘ 
[…] 

56 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:23:12: error: aggregate 
'std::ifstream inStream' has incomplete type  
and cannot be defined 
recover.cpp:24:12: error: aggregate 
'std::ofstream jpegFile' has incomplete type  
and cannot be defined 
make: *** [recover] Error 1 

 

57 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:23:12: error: aggregate 
'std::ifstream inStream' has incomplete type 
and cannot be defined 
recover.cpp:24:12: error: aggregate 
'std::ofstream jpegFile' has incomplete type  
and cannot be defined 
make: *** [recover] Error 1 

 

58 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:23:12: error: aggregate 
'std::ifstream inStream' has incomplete type 
and cannot be defined 
recover.cpp:24:12: error: aggregate 
'std::ofstream jpegFile' has incomplete type  
and cannot be defined 
make: *** [recover] Error 1 

 

59 



Forgot #include <fstream> 

recover.cpp: In function 'int main()': 
recover.cpp:23:12: error: aggregate 
'std::ifstream inStream' has incomplete type 
and cannot be defined 
recover.cpp:24:12: error: aggregate 
'std::ofstream jpegFile' has incomplete type  
and cannot be defined 
make: *** [recover] Error 1 

 

60 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:37:12: error: 'exit' was not declared 
in this scope 
recover.cpp:63:9: error: 'exit' was not declared 
in this scope 
make: *** [recover] Error 1 

61 



??? 

recover.cpp: In function 'int main()': 
recover.cpp:37:12: error: 'exit' was not declared 
in this scope 
recover.cpp:63:9: error: 'exit' was not declared 
in this scope 
make: *** [recover] Error 1 

62 



Forget #include <cstdlib> 

recover.cpp: In function 'int main()': 
recover.cpp:37:12: error: 'exit' was not declared 
in this scope 
recover.cpp:63:9: error: 'exit' was not declared 
in this scope 
make: *** [recover] Error 1 

63 



Outline 

• Handling Streams in C++ 

– Input Control 

– Output Control 

– String Streams 

• Errors in C++ 

• Header Protection 

• Homework 

 

64 



Headers in C++ 

• handled the same way as in C 

 

• including user “.h” files: 
#include “userFile.h” 

 

• including C++ libraries 
#include <iostream> 

 

 
65 



An Example 

typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

#include “bar.h” 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

#include “bar.h” 

#include “foo.h” 

 

int main() 

{ 

  BAR i; 

  FOO j; 

 

  /* ... */ 

 

  return 0; 

} 

 

main.c 

66 



An Example 

typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

#include “bar.h” 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

#include “bar.h” 

#include “foo.h” 

 

int main() 

{ 

  BAR i; 

  FOO j; 

 

  /* ... */ 

 

  return 0; 

} 

 

main.c 

when we try 
to compile 
this… 

67 



An Example 

typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

#include “bar.h” 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

#include “bar.h” 

#include “foo.h” 

 

int main() 

{ 

  BAR i; 

  FOO j; 

 

  /* ... */ 

 

  return 0; 

} 

 

main.c 

In file included from foo.h:1:0, 

                 from main.c:2: 

bar.h:1:16: error: redefinition of 'struct bar' 

In file included from main.c:1:0: 

bar.h:1:16: note: originally defined here 

In file included from foo.h:1:0, 

                 from main.c:2: 

bar.h:3:3: error: conflicting types for 'BAR' 

In file included from main.c:1:0: 

bar.h:3:3: note: previous declaration of 'BAR' was here 

when we try 
to compile 
this… 

68 



An Example 

typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

#include “bar.h” 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

#include “bar.h” 

#include “foo.h” 

 

int main() 

{ 

  BAR i; 

  FOO j; 

 

  /* ... */ 

 

  return 0; 

} 

 

main.c 

In file included from foo.h:1:0, 

                 from main.c:2: 

bar.h:1:16: error: redefinition of 'struct bar' 

In file included from main.c:1:0: 

bar.h:1:16: note: originally defined here 

In file included from foo.h:1:0, 

                 from main.c:2: 

bar.h:3:3: error: conflicting types for 'BAR' 

In file included from main.c:1:0: 

bar.h:3:3: note: previous declaration of 'BAR' was here 

when we try 
to compile 
this… 

69 



What the Compiler is “Seeing” 
typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

#include “bar.h” 

 

 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

#include “bar.h” 

 

 

 

#include “foo.h” 

 

 

 

 

 

 

 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 70 



What the Compiler is “Seeing” 
typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

#include “bar.h” 

 

 

 

#include “foo.h” 

 

 

 

 

 

 

 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 71 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

#include 

“bar.h” 



What the Compiler is “Seeing” 
typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

#include “foo.h” 

 

 

 

 

 

 

 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 72 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

#include 

“bar.h” 

#include 

“bar.h” 



What the Compiler is “Seeing” 
typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 

#include 

“bar.h” 

#include 

“bar.h” 
#include 

“foo.h” 

73 



What the Compiler is “Seeing” 
typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 

#include 

“bar.h” 

#include 

“bar.h” 
#include 

“foo.h” 

74 



Header Protection 

• for our program to work, we need to have the 
definition of the BAR struct in both: 

– foo.h 

– main.c 

 

• the easiest way to solve this problem is 
through the use of header guards 

75 



Header Guards 

• in each “.h” file, use the following: 

 

 

76 



Header Guards 

• in each “.h” file, use the following: 

#ifndef BAR_H if not (previously) defined 

 

 

77 



Header Guards 

• in each “.h” file, use the following: 

#ifndef BAR_H if not (previously) defined 

#define BAR_H then define 

 

 

78 



Header Guards 

• in each “.h” file, use the following: 

#ifndef BAR_H if not (previously) defined 

#define BAR_H then define 

 

[CONTENTS OF .H FILE GO HERE] 

 

 

 
79 



Header Guards 

• in each “.h” file, use the following: 

#ifndef BAR_H if not (previously) defined 

#define BAR_H then define 

 

[CONTENTS OF .H FILE GO HERE] 

 

#endif /* BAR_H */ stop the “if” at this  
     point (end of the file) 

 

 

80 



A Fixed Example 

 

 

 

typedef struct bar{ 

  int a; 

} BAR; 

 

 

 

bar.h 

 

 

 

#include “bar.h” 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

 

 

foo.h 

#include “bar.h” 

#include “foo.h” 

 

int main() 

{ 

  BAR i; 

  FOO j; 

 

  /* ... */ 

 

  return 0; 

} 

 

main.c 

81 



A Fixed Example 

#ifndef BAR_H 

#define BAR_H 

 

typedef struct bar{ 

  int a; 

} BAR; 

 

#endif /*BAR_H*/ 

 

bar.h 

#ifndef FOO_H 

#define FOO_H 

 

#include “bar.h” 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

#endif /*FOO_H*/ 

 

foo.h 

#include “bar.h” 

#include “foo.h” 

 

int main() 

{ 

  BAR i; 

  FOO j; 

 

  /* ... */ 

 

  return 0; 

} 

 

main.c 

82 



What the Compiler “Sees” – Fixed 

83 

typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 

#include 

“bar.h” 

#include 

“bar.h” 
#include 

“foo.h” 



What the Compiler “Sees” – Fixed 

84 

typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 

#include 

“bar.h” 

#include 

“bar.h” 
#include 

“foo.h” 



What the Compiler “Sees” – Fixed 

85 

typedef struct bar{ 

  int a; 

} BAR; 

 

bar.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

foo.h 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct bar{ 

  int a; 

} BAR; 

 

typedef struct foo{ 

  BAR x; 

  char y; 

} FOO; 

 

int main() { 

  BAR i; 

  FOO j; 

  /* ... */ 

  return 0; 

} 

main.c 

#include 

“bar.h” 

#include 

“bar.h” 
#include 

“foo.h” 



Using Header Guards 

• can prevent a lot of errors 

 

• still need to be mindful!!! 

 

• don’t just include every possible header and 
let header guards handle it for you 

86 



Outline 

• Handling Streams in C++ 

– Input Control 

– Output Control 

– String Streams 

• Errors in C++ 

• Header Protection 

• Homework 

 

87 



Homework 5 

• Murder Mystery 

 

• heavy on use of streams 

– not everything you need was covered in class 

– look at the cplusplus.com pages on streams! 

 

• should be much easier (and shorter) than 
Homework 4B 

88 


