
CIS 190: C/C++ Programming

Lecture 6

Introduction to C++

1

Outline

• Changes for C++

– Files & Compiling

– Variables

– Functions

• Input/Output in C++

– cin/cout/cerr

– Print Functions

– Reading/Writing to Files

• hello_world.cpp

2

Files in C++

• hello_world.c

3

Files in C++

• hello_world.c

– becomes

• hello_world.cpp

4

Files in C++

• hello_world.c

– becomes

• hello_world.cpp

• hello_world.h

5

Files in C++

• hello_world.c

– becomes

• hello_world.cpp

• hello_world.h

– stays

• hello_world.h

6

Compiling in C++

• instead of gcc use g++

• you can still use the same flags:

-Wall for all warnings

-c for denoting separate compilation

-o for naming an executable

-g for allowing use of a debugger

• and any other flags you used with gcc

7

Outline

• Changes for C++
– Files & Compiling

– Variables

– Functions

• Input/Output in C++
– cin/cout/cerr

– Print Functions

– Reading/Writing to Files

• hello_world.cpp

8

Variables in C++

• comments can be
/* contained with asterisks */

or
// all text after is a comment

• #define will still work

– but we can also use const instead

9

#define vs const

• #define replaces with value at compile time

#define PI 3.14159265358979

int main()

{

 printf(“Pi is %f\n”,

 PI);

}

10

#define vs const

• #define replaces with value at compile time

#define PI 3.14159265358979

int main()

{

 printf(“Pi is %f\n”,

 3.14159265358979);

}

11

#define vs const

• const defines variable as unable to be changed

 const double PI = 3.14159265358979;

• regardless of the choice, they are used the same
way in code

area = PI * (radius * radius);

12

Details about const

const double PI = 3.14159265358979;

• explicitly specify actual type

• a variable – so can be examined by debugger

• const should not be global

– very very rarely

– normally used inside classes

13

Interacting with Variables in C

• in C, most of the variables we use are
“primitive” variables (int, char, double, etc.)

• when we interact with primitive variables using
provided libraries, we call functions and pass
those variables in as arguments
fopen(ifp, “input.txt”, “r”);

free(intArray);

strlen(string1);

 14

Interacting with Variables in C++

• in C++, many of the variables we use are
instances of a class (like string, ifstream, etc.)

• when we want to interact with these variables,
we use method calls on those variables
inStream.open(“input.txt”);

string2.size();

15

Using Variables in C++

• declaration is more lenient

– variables can be declared anywhere in the code

– may still want them at the top, for clarity

• C++ introduces new variables

– string

– bool

16

string

• requires header file: #include <string>

Some advantages over C-style strings:

• length of string is not fixed

– or required to be dynamically allocated

• can use “normal” operations

• lots of helper functions

17

Creating and Initializing a string

• create and initialize as empty

string name0;

18

Creating and Initializing a string

• create and initialize as empty

string name0;

• create and initialize with character sequence
string name1 (“Alice”);

string name2 = “Bob”;

19

Creating and Initializing a string

• create and initialize as empty

string name0;

• create and initialize with character sequence
string name1 (“Alice”);

string name2 = “Bob”;

• create and initialize as copy of another string
string name3 (name1);

string name4 = name2;

20

“Normal” string Operations

• determine length of string
name1.size();

• determine if string is empty
name2.empty();

• can use the equality operator

if (name1 == name2)

21

More string Comparisons

• can also use the other comparison operators:

if (name1 != name2)

• alphabetically (but uses ASCII values)
if (name3 < name 4)

if (name3 > name 4)

• and can concatenate using the ‘+’ operator

name0 = name1 + “ “ + name2;

22

Looking at Sub-Strings

• can access one character like C-style strings
name1[0] = ‘a’;

• can access a sub-string
name1.substr(2,3);

• “ice”
name2.substr(0,2);

• “Bo”

23

bool

• two ways to create and initialize
bool boolVar1 = true;

bool boolVar2 (false);

• can compare (and set) to true or false

24

Outline

• Changes for C++

– Files & Compiling

– Variables

– Functions

• Input/Output in C++

– cin/cout/cerr

– Print Functions

– Reading/Writing to Files

• hello_world.cpp

25

Functions in C++

• some similarity to functions in C

– variables are only in scope within the function

– require a prototype and a definition

– arguments can still be passed by reference or
passed by value

• one small difference: no need to pass array
length (can just use empty brackets)
 void PrintArray (int arr []);

 26

Using const in C++ functions

• when used on pass-by-value

int SquareNum (const int x) {

 return (x * x); /* fine */

}

int SquareNum (int x) {

 return (x * x); /* fine */

}

27

Using const in C++ functions

• when used on pass-by-value

• no real difference; kind of pointless

– changes to pass-by-value variables don’t last
beyond the scope of the function

• conventionally: not “wrong,” but not done

28

Using const in C++ functions

• when used on pass-by-reference

void SquareNum (const int *x) {

 (*x) = (*x) * (*x); /* error */

}

void SquareNum (int *x) {

 (*x) = (*x) * (*x); /* fine */

}

29

Using const in C++ functions

• when you compile the “const” version:

void SquareNum (const int *x) {

 (*x) = (*x) * (*x); /* error */

}

error: assignment of read-only

 location '*x'

30

Using const in C++ functions

• when used on pass-by-reference

• prevents changes to variables, even when
they are passed in by reference

• conventionally:

– use for user-defined types (structs, etc.)

– don’t use for simple built-in types (int, float, char)

• except maybe arrays

31

Outline

• Changes for C++
– Files & Compiling

– Variables

– Functions

• Input/Output in C++
– cin/cout/cerr

– Print Functions

– Reading/Writing to Files

• hello_world.cpp

32

Working with Input/Output in C++

• at top of each file that uses input/output

using namespace std;

• to use streams to interact with user/console,
must have #include <iostream>

• to use streams to interact with files, must
have #include <fstream>

33

Input/Output in C++

 #include <stdio.h>

 printf(“test: %d\n”, x);

 scanf(“%d”, &x);

34

Input/Output in C++

 #include <stdio.h>

 #include <iostream>

 printf(“test: %d\n”, x);

 scanf(“%d”, &x);

35

Input/Output in C++

 #include <stdio.h>

 #include <iostream>

 using namespace std;

 printf(“test: %d\n”, x);

 scanf(“%d”, &x);

36

Input/Output in C++

 #include <stdio.h>

 #include <iostream>

 using namespace std;

 printf(“test: %d\n”, x);

 cout << “test: ” << x << endl;

 scanf(“%d”, &x);

37

Input/Output in C++

 #include <stdio.h>

 #include <iostream>

 using namespace std;

 printf(“test: %d\n”, x);

 cout << “test: ” << x << endl;

 scanf(“%d”, &x);

 cin >> x;

38

The << Operator

• insertion operator; used along with cout

• separate each “type” of thing we print out

int x = 3;

cout << “X is: ” << x

 << “; squared ”

 << SquareNum(x) << endl;

39

The << Operator

• insertion operator; used along with cout

• separate each “type” of thing we print out

int x = 3;

cout << “X is: ” << x

 << “; squared”

 << SquareNum(x) << endl;

40

The >> Operator

• extraction operator; used with cin

– returns a boolean for (un)successful read

• like scanf and fscanf, skips leading whitespace,
and stops reading at next whitespace

• don’t need to use ampersand on variables
cin >> firstName >> lastName >> age;

41

using namespace std

• at top of each file you must have
using namespace std;

• otherwise you must use instead of
std::cin cin

std::cout cout

std::endl endl

42

cerr

• in addition to cin and cout,
we also have a stream called cerr

• use it instead of stderr:

fprintf(stderr, “error!\n”);

43

cerr

• in addition to cin and cout,
we also have a stream called cerr

• use it instead of stderr:

fprintf(stderr, “error!\n”);

cerr << “error!” << endl;

44

Outline

• Changes for C++

– Files & Compiling

– Variables

– Functions

• Input/Output in C++

– cin/cout/cerr

– Print Functions

– Reading/Writing to Files

• hello_world.cpp

45

Quick Note on “Print” Functions

two basic ways to handle printing:

• function returns a string

• function performs its own printing

46

Quick Note on “Print” Functions

two basic ways to handle printing:

• function returns a string

– call function within a cout statement

string PrintName (int studentNum);

• function performs its own printing

47

Quick Note on “Print” Functions

two basic ways to handle printing:

• function returns a string

– call function within a cout statement

string PrintName (int studentNum);

• function performs its own printing

– call function separately from a cout statement

void PrintName (int studentNum);

48

Outline

• Changes for C++

– Files & Compiling

– Variables

– Functions

• Input/Output in C++

– cin/cout/cerr

– Print Functions

– Reading/Writing to Files

• hello_world.cpp

49

Reading In Files in C++

 FILE *ifp;

read/write will be specified in call to fopen()

50

Reading In Files in C++

 FILE *ifp;

 ifstream inStream;

read specified by variable type

– ifstream for reading

51

Reading In Files in C++

 FILE *ifp;

 ifstream inStream;

 ifp = fopen(“testFile.txt”, “r”);

read is specified by “r” in call to fopen

52

Reading In Files in C++

 FILE *ifp;

 ifstream inStream;

 ifp = fopen(“testFile.txt”, “r”);

 inStream.open(“testFile.txt”);

read is specified by declaration of inStream as a
variable of type ifstream; used by open()

 53

Reading In Files in C++

 FILE *ifp;

 ifstream inStream;

 ifp = fopen(“testFile.txt”, “r”);

 inStream.open(“testFile.txt”);

 if (ifp == NULL) { /* exit */ }

54

Reading In Files in C++

 FILE *ifp;

 ifstream inStream;

 ifp = fopen(“testFile.txt”, “r”);

 inStream.open(“testFile.txt”);

 if (ifp == NULL) { /* exit */ }

 if (!inStream) { /* exit */ }

55

Reading In Files in C++

• ifstream inStream;

– declare an input file variable

• inStream.open(“testFile.txt”);

– open a file for reading

• if (!inStream) { /* exit */ }

– check to make sure file was opened

56

Writing to Files in C++

• very similar to reading in files

• instead of type ifstream,
use type ofstream

• everything else is the same

57

Writing To Files in C++

• ofstream outStream;

– declare an output file variable

• outStream.open(“testFile.txt”);

– open a file for writing

• if (!outStream) { /* exit */ }

– check to make sure file was opened

58

Opening Files

• the .open() call for file streams takes a
char* (a C-style string)

• if you are using a C++ string variable, you must
give it a C-style string

• calling .c_str() will return a C-style string
cppString.c_str()

stream.open(cppString.c_str());

59

Using File Streams in C++

• once file is correctly opened, use your
ifstream and ostream variables the same
as you would use cin and cout

inStm >> firstName >> lastName;

outStm << firstName << “ “

 << lastName << endl;

60

Advantages of Streams

• does not use placeholders (%d, %s, etc.)

– no placeholder type-matching errors

• can split onto multiple lines easily

• precision with printing can be easier

– once set using setf(), the effect remains until
changed with another call to setf()

61

Finding EOF with ifstream – Way 1

• use >>’s boolean return to your advantage

while (inStream >> x)

{

 // do stuff with x

}

62

Finding EOF with ifstream – Way 2

• use a “priming read”

inStream >> x;

while(!inStream.eof())

{

 // do stuff with x

 // read in next x

 inStream >> x;

}

63

Outline

• Changes for C++

– Files & Compiling

– Variables

– Functions

• Input/Output in C++

– cin/cout/cerr

– Print Functions

– Reading/Writing to Files

• hello_world.cpp

64

hello_world.cpp

/* let’s convert this to use

 streams and C++’s library */

#include <stdio.h>

int main() {

 printf(“Hello world!\n”);

 return 0;

}

65
LIVECODING LIVECODING

