CIS 190: C/C++ Programming

Lecture 6

Introduction to C++

Outline

* Changes for C++
— Files & Compiling
— Variables
— Functions
* Input/Output in C++
— cin/cout/cerr
— Print Functions

— Reading/Writing to Files
* hello_world.cpp

Files in C++

. hello_world .C

Files in C++

. hellq;world.c

— becomes

* hello world.cpp

Files in C++

. hellq;world.c

— becomes

* hello world.cpp

. hello_world.h

Files in C++

hellq;world.c

— becomes

hello world.cpp

hello_world.h
— stays
hellq;world.h

Compiling in C++

* instead of gcc use g++

e you can still use the same flags:
-Wall for all warnings

-C for denoting separate compilation
-0 for naming an executable
-g for allowing use of a debugger

* and any other flags you used with gcc

Outline

* Changes for C++

— Files & Compiling

— Variables

— Functions
* Input/Output in C++

— cin/cout/cerr

— Print Functions

— Reading/Writing to Files
* hello_world.cpp

Variables in C++

comments can be

/* contained with asterisks */
or

// all text after is a comment

#define will still work

— but we can also use const instead

define vs const

 #define replaces with value at compile time

#define PI 3.14159265358979

int main ()

{
printf (“Pi is %£f\n”,
PI) ;

define vs const

 #define replaces with value at compile time

#define PI 3.14159265358979

int main ()

{
printf (“Pi is %£f\n”,
3.14159265358979) ;

define vs const

 const defines variable as unable to be changed
const double PI = 3.14159265358979;

* regardless of the choice, they are used the same
way in code

area = PI * (radius * radius);

Details about const

const double PI = 3.14159265358979;

* explicitly specify actual type
e avariable —so can be examined by debugger

e const should not be global
— very very rarely
— normally used inside classes

Interacting with Variables in C

* in C, most of the variables we use are
“primitive” variables (int, char, double, etc.)

 when we interact with primitive variables using
provided libraries, we call functions and pass
those variables in as arguments
fopen(ifp, “input.txt”, “r”);
free (intArray) ;
strlen(stringl);

Interacting with Variables in C++

* in C++, many of the variables we use are
instances of a class (like string, ifstream, etc.)

 when we want to interact with these variables,
we use method calls on those variables

inStream.open (“input. txt”) ;

string2.size() ;

Using Variables in C++

e declaration is more lenient
— variables can be declared anywhere in the code
— may still want them at the top, for clarity

e C++ introduces new variables
— string
— bool

string

* requires header file: #include <string>

Some advantages over C-style strings:
* |length of string is not fixec

— or required to be dynamically allocated

|II

e can use “normal” operations

* |ots of helper functions

Creating and Initializing a string

* create and initialize as empty

string nameO;

Creating and Initializing a string

* create and initialize as empty

string nameO;
e create and initialize with character sequence
string namel (“Alice”);

string name2 = “Bob”;

19

Creating and Initializing a string

* create and initialize as empty

string nameO;

e create and initialize with character sequence
string namel (“Alice”);
\\Bobll;

string name?2

e create and initialize as copy of another string
string name3 (namel);

string name4 = nameZ2;

20

III

“Normal” string Operations

e determine length of string

namel.size () ;

e determine if string is empty
name2 .empty () ;

e can use the equality operator

if (namel == name2)

More string Comparisons

e can also use the other comparison operators:
if (namel !'= name2)

 alphabetically (but uses ASCII values)
if (name3 < name 4)

if (name3 > name 4)

* and can concatenate using the ‘+’ operator

name0 = namel + Y Y + name?2;

Looking at Sub-Strings

* can access one character like C-style strings
namel[0] = ‘a’;

* can access a sub-string
namel . substr (2, 3) ;

(i 7

* |Ce
name?2 .substr (0, 2) ;

° IIBO”

bool

* two ways to create and initialize
bool boolVarl = true;
bool boolVar2 (false) ;

e can compare (and set) to true or false

24

Outline

* Changes for C++
— Files & Compiling
— Variables
— Functions
* Input/Output in C++
— cin/cout/cerr
— Print Functions

— Reading/Writing to Files
* hello_world.cpp

25

Functions in C++

* some similarity to functions in C
— variables are only in scope within the function
— require a prototype and a definition

— arguments can still be passed by reference or
passed by value

* one small difference: no need to pass array
length (can just use empty brackets)
void PrintArray (int arr []);

Using const in C++ functions

 when used on pass-by-value

int SquareNum (const int x) {

return (x * x); /* fine */

int SquareNum (int x) {

return (x * x); /* fine */

27

Using const in C++ functions

 when used on pass-by-value

* no real difference; kind of pointless

— changes to pass-by-value variables don’t last
beyond the scope of the function

e conventionally: not “wrong,” but not done

Using const in C++ functions

 when used on pass-by-reference

void SquareNum (const int *x) ({
(*x) = (*x) * (*x); /* error */

}

void SquareNum (int *x) {
(*x) = (*x) * (*x); /* fine */

}

29

Using const in C++ functions

 when you compile the “const” version:

void SquareNum (const int *x) ({
(*x) = (*x) * (*x); /* error */

}

error: assignment of read-only
location '*x'

Using const in C++ functions

 when used on pass-by-reference

* prevents changes to variables, even when
they are passed in by reference

e conventionally:
— use for user-defined types (structs, etc.)
— don’t use for simple built-in types (int, float, char)
* except maybe arrays

Outline

* Changes for C++

— Files & Compiling

— Variables

— Functions
* Input/Output in C++

— cin/cout/cerr

— Print Functions

— Reading/Writing to Files
* hello_world.cpp

32

Working with Input/Output in C++

* at top of each file that uses input/output
using namespace std;

* to use streams to interact with user/console,
must have #include <iostream>

* to use streams to interact with files, must
have #include <fstream>

33

Input/Output in C++

#include <stdio.h>

printf (“test: %d\n”, x);

scanf (“%d”, &x);

34

Input/Output in C++

#inelude <stdioe h>

#include <iostream>

printf (“test: %d\n”, x);

scanf (“%d”, &x);

35

Input/Output in C++

#inelude <stdio-h>
#include <iostream>

using namespace std;
printf (“test: %d\n”, x);

scanf (“%d”, &x);

36

Input/Output in C++

#inelude <stdio-h>
#include <iostream>

using namespace std;

printf (Ve S %)

cout << “test: ” KK x <K<K endl;

scanf (“%d”, &x);

37

Input/Output in C++

#inelude <stdio-h>
#include <iostream>

using namespace std;

printf (Ve 24)

cout << “test: ” KK x <K<K endl;

seanf(* &%)+

cin >> X;

38

The << Operator

* insertion operator; used along with cout

* separate each “type” of thing we print out

int x = 3;
cout < "X 1s: " <K< x
<< “; squared ”
<< SquareNum(x) << endl;

The << Operator

* insertion operator; used along with cout

* separate each “type” of thing we print out

intx=3°

cout “X 1s: @x
@ Y, squared”
@ SquareNum (x) @endl ;

The >> Operator

e extraction operator; used with cin

— returns a boolean for (un)successful read

* |like scanf and fscanf, skips leading whitespace,
and stops reading at next whitespace

 don’t need to use ampersand on variables
cin >> firstName >> lastName >> age;

using namespace std

e at top of each file you must have
using namespace std;

e otherwise you must use
std: :cin
std: :cout
std: :endl

instead of
cin
cout
endl

42

cerr

* in addition to c¢in and cout,
we also have a stream called cerr

e use it instead of stderr:

fprintf (stderr, “error!\n”);

cerr

* in addition to c¢in and cout,
we also have a stream called cerr

e use it instead of stderr:

fprintf{stderr, Vool a2y

cerr << “error!” << endl;

Outline

* Changes for C++
— Files & Compiling
— Variables
— Functions
* Input/Output in C++
— cin/cout/cerr
— Print Functions

— Reading/Writing to Files
* hello_world.cpp

45

Quick Note on “Print” Functions

two basic ways to handle printing:
* function returns a string

e function performs its own printing

Quick Note on “Print” Functions

two basic ways to handle printing:

* function returns a string
— call function within a cout statement

string PrintName (int studentNum) ;

e function performs its own printing

47

Quick Note on “Print” Functions

two basic ways to handle printing:

* function returns a string
— call function within a cout statement
string PrintName (int studentNum) ;

e function performs its own printing
— call function separately from a cout statement
void PrintName (int studentNum) ;

48

Outline

* Changes for C++
— Files & Compiling
— Variables
— Functions
* Input/Output in C++
— cin/cout/cerr
— Print Functions

— Reading/Writing to Files
* hello_world.cpp

49

Reading In Files in C++

FILE *ifp;

read/write will be specified in call to fopen ()

Reading In Files in C++

i1fstream i1nStream;

read specified by variable type
— ifstream forreading

51

Reading In Files in C++

i1fstream i1nStream;

ifp = fopen(“testFile.txt”, “r”);

o
I

read is specified by in call to fopen

52

Reading In Files in C++

i1fstream i1nStream;

— \\

77 \\ 77 °
- rm A EEA B

inStream.open (“testFile. txt”) ;

read is specified by declaration of inStream as a
variable of type ifstream; used by open()

53

Reading In Files in C++

i1fstream i1nStream;

— \\

44 \\ 44 °
° tXt J r) ’/

inStream.open (“testFile. txt”) ;

if (ifp == NULL) { /* exit */ }

54

Reading In Files in C++

i1fstream i1nStream;

— \\

44 \\ 44 °
° tXt J r) ’/

inStream.open (“testFile. txt”) ;

if{—ifp=="NULL)}—{/*exit*/}
if ('inStream) { /* exit */ }

55

Reading In Files in C++

i1fstream i1inStream;

— declare an input file variable

inStream.open (“testFile. txt”) ;

— open a file for reading

if ('inStream) { /* exit */ }

— check to make sure file was opened

56

Writing to Files in C++

e very similar to reading in files

* instead of type ifstream,
use type ofstream

* everything else is the same

Writing To Files in C++

ofstream outStream;

— declare an output file variable

outStream.open (“testFile. txt”) ;

— open a file for writing

if ('outStream) { /* exit */ }

— check to make sure file was opened

58

Opening Files

the .open () call for file streams takes a
char* (a C-style string)

if you are using a C++ string variable, you must
give it a C-style string

calling .c_str() will return a C-style string
cppString.c str()

stream.open (cppString.c_str())

Using File Streams in C++

* once file is correctly opened, use your
ifstream and ostream variables the same

as you would use e¢in and cout

inStm >> firstName >> lastName;

outStm << firstName <K “ "
<< lastName << endl;

Advantages of Streams

* does not use placeholders (%d, $s, etc.)

— no placeholder type-matching errors
* can split onto multiple lines easily

e precision with printing can be easier

— once set using setf (), the effect remains until
changed with another call to setf ()

Finding EOF with ifstream — Way 1

 use >>’s boolean return to your advantage

while (inStream >> x)

{
// do stuff with x

}

Finding EOF with ifstream — Way 2
e use a “priming read”

inStream >> Xx;

while('inStream.eocf ())

{
// do stuff with x

// read in next x
inStream >> x;

}

Outline

* Changes for C++
— Files & Compiling
— Variables
— Functions
* Input/Output in C++
— cin/cout/cerr
— Print Functions

— Reading/Writing to Files
* hello_world.cpp

64

hello world.cpp

/* let’s convert this to use
streams and C++’s library */
#include <stdio.h>

int main () {
printf (“Hello world!\n”);
return O;

}
LIVECODING

65

