
Lecture 9:
More Constraint
Programming
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 189

mailto:jediahkrohanmenezes@alumni.upenn.edu

Logistics
● Project proposals due this Thursday 3/23
● HW4 due next Tuesday 3/28
● Please submit your project pairing on Gradescope if

you haven’t already!

2

Recap: Constraint Programs
● Find an assignment of variables to values, subject

to general constraints
● Discrete, finitely bounded domains (integers only)
● May or may not optimize an objective

3

Constraints for BoolVars
● Recall model.NewBoolVar(name)

○ Equivalent to model.NewIntVar(0, 1, name)

● boolvar.Not()

● model.AddBoolOr(boolvars_list)

● model.AddBoolAnd(boolvars_list)

● model.AddImplication(b1, b2)

4

Ex: Magic Sequence
● A magic sequence is a sequence 𝑠!, 𝑠", … , 𝑠# where

𝑠$ = number of occurrences of 𝑖 in the sequence
● Ex:

5

𝒔𝟎 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒
? ? ? ? ?

Ex: Magic Sequence
● A magic sequence is a sequence 𝑠!, 𝑠", … , 𝑠# where

𝑠$ = number of occurrences of 𝑖 in the sequence
● Ex:

6

𝒔𝟎 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒
2 1 2 0 0

Reification
● What if we want to make constraints based on

other constraints (rather than just variables)?
● Reification: constraints as first-class citizens

● Introduce a new boolean (0/1) variable 𝑏 which is
true if and only if constraint 𝑐 holds (𝑏 ⇔ 𝑐)
○ Essentially, name truth value of 𝑐 with variable 𝑏

7

Reification in OR-Tools
● OR-Tools API uses half-reification: instead of 𝑏 ⇔ 𝑐,

just supports 𝑏 ⇒ 𝑐

○ Can fully reify by combining 𝑏 ⇒ 𝑐 and 𝑏 ⇒ 𝑐

● constraint.OnlyEnforceIf(bool_var)
○ Means bool_var ⇒ constraint

8

⚠ Reification Warning
● constraint.OnlyEnforceIf only works for these constraints:

○ Add
○ AddBoolOr
○ AddBoolAnd
○ AddLinearExpressionInDomain (haven’t seen this one yet)

● This is usually all you need

9

Magic Sequence in OR-Tools
● Initialize model and 𝑠$ variables

10

Magic Sequence in OR-Tools
● Reify constraints 𝑠$ = 𝑗 into new boolean variables

11

Magic Sequence in OR-Tools
● Make 𝑠$ equal to number of occurrences of 𝑖

12

Magic Sequence in OR-Tools
● Solve and print the output

13

Non-contiguous Domains
● cp_model.Domain.FromValues([0,2,4,6,8])

● cp_model.Domain.FromIntervals([0, 2],[6, 8])

● model.NewIntVarFromDomain(domain, name)

14

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Linear Expressions on Domains
● Enforce that result of a linear expression must fall into a domain
● cp_model.AddLinearExpressionInDomain(

x + y,

cp_model.Domain.FromValues([0,2,4])

)

15

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

Ex: Shipping Allotments
● Shipping company has 𝑛 ships with capacity 100 each
● Want to load all shipments of varying sizes onto ships
● Goal: maximize number of ships which have at least 20

capacity unused (in case of emergency)
● See worked solution in additional code (ships.py)

16

Tuning the CP-SAT Solver
● We can play around with CP-SAT internals to

possibly speed up the search
● There are tons of parameters that can be adjusted

○ Some are documented better than others...
○ https://github.com/google/or-

tools/blob/stable/ortools/sat/sat_parameters.proto

● Warning: these things are generally far less
important than having a good encoding

17

https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto
https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto

Parallelization
● We can run solver computation in parallel across

multiple threads

○ By default, CP-SAT will try to use all available cores

18

Hinting
● We can give the model a hint to try setting a

variable to a specified value

19

Quick & Dirty Optimization
● Finding an optimal solution can take far longer than

finding a feasible solution
● Often in practice, we don’t really care about having the

true optimal value with total certainty
○ Just want it to be “close enough”

20

Quick & Dirty Optimization
Solution:
● Optimize objective and run solver for a reasonable amount of

time (depends on your patience)
● Interrupt early with Ctrl+C or max_time_in_seconds param

○ If interrupted, solver returns FEASIBLE instead of OPTIMAL

● Print the intermediate objective value and solution and
decide if it’s “good enough”
○ For tough problems, no guarantee that you are close to optimal!
○ best_bound in response stats gives best LB (when minimizing)

or UB (when maximizing) proved so far for optimal value

21

Quick & Dirty Optimization
● Helpful: set log_search_progress param to True

○ Prints every time a new best solution is found

● Sometimes helpful: custom solution callback
○ Called each time any new feasible solution is found

22

Approximating Feasibility
● What if non-optimization problem is too hard to solve?
● Can’t interrupt early for a “good enough” solution;

intermediate solution is feasible or it is not
● What if we were OK with a “not quite feasible” solution?

○ What could “not quite feasible” mean?

23

Soft Constraints
● Constraints like Add(...) are hard constraints

○ Must be satisfied

● Soft constraints: can be violated, but incurs a penalty
● Transform feasibility problem into optimization problem

by minimizing penalty
○ Allows interrupting early if you’re OK with some violated constraints
○ Can sometimes be faster than solving with hard constraints!

24

Ex: Soft Graph Coloring
● Hard constraint:

for every edge (𝑢, 𝑣), 𝑐𝑜𝑙𝑜𝑟 𝑢 ≠ 𝑐𝑜𝑙𝑜𝑟(𝑣)

● Soft constraint
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = num. edges 𝑢, 𝑣 with 𝑐𝑜𝑙𝑜𝑟 𝑢 = 𝑐𝑜𝑙𝑜𝑟(𝑣)

● Can count number of violated constraints using reification

25

Optimizing Pairs of Objectives
● What if we want to add soft constraint with penalty 𝑝 but

problem already optimizes (say, minimizes) objective 𝑜?
● Key idea: why not minimize both?
● Attempt 1: minimize 𝒐 + 𝒑

○ Problem: 𝑜 and 𝑝 may be interrelated
○ E.g., minimum possible value of 𝑜 may be lower when

𝑝 = 1 than when 𝑝 = 0

26

𝑜

𝑝

Optimizing Pairs of Objectives
● Observation: avoid interdependence by minimizing 𝑝 first

and using 𝑜 to break ties
○ Aka, minimize (𝑝, 𝑜) over the lexicographic ordering

● How to make sure that 𝑝 is minimized before 𝑜?
● Attempt 2:

○ minimize 𝑴𝒑+ 𝒐, where 𝑀 = 𝑜%&' − 𝑜%$# + 1
● Can generalize to maximization & general tuples

27

Optimizing Pairs of Objectives
● Previous approach doesn’t scale well for >2 objectives
● What’s another way to do it using multiple calls to Solve?

28

General CP-SAT Modeling Tips
● Don’t be afraid to add new variables/constraints, but be

aware of roughly how many you have (𝑂(𝑛)? 𝑂(𝑛()?)
● Try to restrict range of values for each variable
● Use boolean variables/constraints when possible
● Experiment with hard vs. soft constraints
● If possible, split into subproblems, then combine solutions
● Make it easy to toggle constraints on/off for debugging

29

MIP vs CP-SAT

● Neither is clearly more performant in general
● Neither is an evolution of the other

30

MIP CP-SAT
• Supports infinite bounds
• Supports fractional variables and

coefficients
• Better handles LP-style problems

(with integers mixed in)
• Reification of constraints is possible,

but requires algebraic modeling trick

• Better handles combinatorial
problems, Booleans

• More sophisticated interface
• Lots of specialized modeling objects
• Modeling may be easier
• Models may be more extensible
• Reification is easier, more performant

