

Lecture 9: More Constraint

Programming

Rohan Menezes <u>rohanmenezes@alumni.upenn.edu</u>

Logistics

- **Project proposals** due this Thursday 3/23
- **HW4** due next Tuesday 3/28
- Please submit your project pairing on Gradescope if you haven't already!

Recap: Constraint Programs

- Find an assignment of variables to values, subject to general constraints
- Discrete, finitely bounded domains (integers only)
- May or may not optimize an objective

Constraints for BoolVars

- Recall model.NewBoolVar(name)
 - Equivalent to model.NewIntVar(0, 1, name)
- boolvar.Not()
- model.AddBoolOr(boolvars_list)
- model.AddBoolAnd(boolvars_list)
- model.AddImplication(b1, b2)

Ex: Magic Sequence

A magic sequence is a sequence s₀, s₁, ..., s_n where s_i = number of occurrences of i in the sequence

• Ex:

s ₀	<i>s</i> ₁	<i>s</i> ₂	s ₃	s ₄
?	?	?	?	?

Ex: Magic Sequence

A magic sequence is a sequence s₀, s₁, ..., s_n where s_i = number of occurrences of i in the sequence

• Ex:

<i>s</i> ₀	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	s ₄
2	1	2	0	0

Reification

- What if we want to make constraints based on other constraints (rather than just variables)?
- **Reification:** constraints as first-class citizens
- Introduce a new boolean (0/1) variable b which is true if and only if constraint c holds ($b \Leftrightarrow c$)
 - Essentially, name truth value of c with variable b

Reification in OR-Tools

- OR-Tools API uses **half-reification**: instead of $b \Leftrightarrow c$, just supports $b \Rightarrow c$
 - Can fully reify by combining $b \Rightarrow c$ and $\overline{b} \Rightarrow \overline{c}$
- onstraint.OnlyEnforceIf(bool_var)
 - Means bool_var ⇒ constraint

Reification Warning

- **constraint.OnlyEnforceIf** only works for these constraints:
 - o Add

- AddBoolOr
- AddBoolAnd
- AddLinearExpressionInDomain (haven't seen this one yet)
- This is usually all you need

• Initialize model and *s_i* variables

model = cp_model.CpModel()

```
# Create s_i variables
S = {}
for i in range(n+1):
    S[i] = model.NewIntVar(0, n+1, f's_{i}')
```


• Reify constraints $s_i = j$ into new boolean variables

```
# Reified constraints: eq[i, j] <-> s_i == j
eq = {}
for i in range(n+1):
    for j in range(n+1):
        eq[i, j] = model.NewBoolVar(f's_{i} == {j}')
        model.Add(S[i] == j).OnlyEnforceIf(eq[i, j])
        model.Add(S[i] != j).OnlyEnforceIf(eq[i, j].Not())
```


• Make s_i equal to number of occurrences of i

```
# s_i = number of occurrences of i in sequence
for i in range(n+1):
    model.Add(
        S[i] == sum(eq[j, i] for j in range(n+1))
        )
```


• Solve and print the output

solver = cp_model.CpSolver()
if solver.Solve(model) == cp_model.FEASIBLE:
 print([f's_{i}={solver.Value(S[i])}' for i in range(n+1)])

Non-contiguous Domains

cp_model.Domain.FromValues([0,2,4,6,8])

0	1	2	3	4	5	6	7	8	
---	---	---	---	---	---	---	---	---	--

cp_model.Domain.FromIntervals([0, 2],[6, 8])

0 1	. 2	3	4	5	6	7	8
-----	-----	---	---	---	---	---	---

model.NewIntVarFromDomain(domain, name)

Linear Expressions on Domains

- Enforce that result of a linear expression must fall into a domain
- cp_model.AddLinearExpressionInDomain(

x + y,

cp_model.Domain.FromValues([0,2,4])

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
0,2	1,2	2,2	3,2	4,2
0,3	1,3	2,3	3,3	4,3
0,4	1,4	2,4	3,4	4,4

Ex: Shipping Allotments

- Shipping company has n ships with capacity 100 each
- Want to load all shipments of varying sizes onto ships
- **Goal:** maximize number of ships which have at least 20 capacity unused (in case of emergency)
 - See worked solution in additional code (ships.py)

Tuning the CP-SAT Solver

- We can play around with CP-SAT internals to possibly speed up the search
- There are tons of parameters that can be adjusted
 - Some are documented better than others...
 - <u>https://github.com/google/or-</u> <u>tools/blob/stable/ortools/sat/sat_parameters.proto</u>
- **Warning:** these things are generally far less important than having a good encoding

Parallelization

• We can run solver computation in parallel across multiple threads

solver = cp_model.CpSolver()
solver.parameters.num_search_workers = 4

• By default, CP-SAT will try to use all available cores

Hinting

• We can give the model a **hint** to try setting a variable to a specified value

try setting x = 5 first model.AddHint(x, 5)

Quick & Dirty Optimization

- Finding an optimal solution can take far longer than finding a feasible solution
- Often in practice, we don't *really* care about having the true optimal value with total certainty
 - Just want it to be "close enough"

Quick & Dirty Optimization

Solution:

- Optimize objective and run solver for a reasonable amount of time (depends on your patience)
- Interrupt early with Ctrl+C or max_time_in_seconds param
 - If interrupted, solver returns FEASIBLE instead of OPTIMAL
- Print the intermediate objective value and solution and decide if it's "good enough"
 - For tough problems, no guarantee that you are close to optimal!
 - best_bound in response stats gives best LB (when minimizing) or UB (when maximizing) proved so far for optimal value

Quick & Dirty Optimization

- Helpful: set log_search_progress param to True
 Prints every time a new best solution is found
- Sometimes helpful: custom solution callback
 - Called each time any new feasible solution is found

```
class BestSolutionFinder(cp_model.CpSolverSolutionCallback):
```

```
def __init__(self, minimizing=True):
    cp_model.CpSolverSolutionCallback.__init__(self)
    self.minimizing = minimizing
    self.best_value = (1 if minimizing else -1) * float('inf')
```

```
def on_solution_callback(self):
    obj = self.ObjectiveValue()
    if (self.minimizing and obj < self.best_value) \
    or (not self.minimizing and obj > self.best_value):
        self.best_value = self.ObjectiveValue()
        print(f'New best value: {self.best_value}')
```

solver = cp_model.CpSolver()
solver.parameters.num_search_workers = 6
solver.parameters.log_search_progress = True
Our solution callback is redundant to logging
best = BestSolutionFinder()
solver.SolveWithSolutionCallback(model, best)

Approximating Feasibility

- What if non-optimization problem is too hard to solve?
- Can't interrupt early for a "good enough" solution; intermediate solution is feasible or it is not
- What if we were OK with a "not quite feasible" solution?
 What could "not quite feasible" mean?

Soft Constraints

- Constraints like Add (...) are hard constraints
 Must be satisfied
- **Soft constraints**: can be violated, but incurs a penalty
- Transform feasibility problem into optimization problem by minimizing penalty
 - Allows interrupting early if you're OK with some violated constraints
 - Can sometimes be faster than solving with hard constraints!

Ex: Soft Graph Coloring

• Hard constraint:

for every edge (u, v), $color(u) \neq color(v)$

• Soft constraint

penalty = num. edges (u, v) with color(u) = color(v)

• Can count number of violated constraints using reification

Optimizing Pairs of Objectives

- What if we want to add soft constraint with penalty *p* but problem already optimizes (say, minimizes) objective *o*?
- Key idea: why not minimize both?
- Attempt 1: minimize o + p
 - **Problem:** *o* and *p* may be interrelated
 - E.g., minimum possible value of o may be lower when p = 1 than when p = 0

Optimizing Pairs of Objectives

- **Observation:** avoid interdependence by minimizing *p* first and using *o* to break ties
 - Aka, minimize (p, o) over the **lexicographic ordering**
- How to make sure that *p* is minimized before *o*?
- Attempt 2:

• minimize Mp + o, where $M = o_{max} - o_{min} + 1$

• Can generalize to maximization & general tuples

Optimizing Pairs of Objectives

- Previous approach doesn't scale well for >2 objectives
- What's another way to do it using multiple calls to Solve?

model.Minimize(p)
solver.Solve(model)

```
# Hint (may speed up solving)
model.AddHint(p, solver.Value(p))
model.AddHint(o, solver.Value(o))
```

Minimize o (and constrain p based on previous optimal value)
model.Add(p == solver.Value(p)) # use >= or <= if not optimal
model.Minimize(o)</pre>

General CP-SAT Modeling Tips

- Don't be afraid to add new variables/constraints, but be aware of roughly how many you have $(O(n)? O(n^3)?)$
- Try to restrict range of values for each variable
- Use boolean variables/constraints when possible
- Experiment with hard vs. soft constraints
- If possible, split into subproblems, then combine solutions
- Make it easy to toggle constraints on/off for debugging

MIP vs CP-SAT

	MIP		CP-SAT
•	Supports infinite boundsSupports fractional variables and		Better handles combinatorial
•			problems, Booleans
	coefficients	•	More sophisticated interface
•	Better handles LP-style problems		Lots of specialized modeling objects
	(with integers mixed in) Reification of constraints is possible,	•	Modeling may be easier
•		•	Models may be more extensible
	but requires algebraic modeling trick	•	Reification is easier, more performant

- Neither is clearly more performant in general
- Neither is an evolution of the other