
Lecture 8:
Intro to Constraint
Programming
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 189

mailto:rohanmenezes@alumni.upenn.edu

Logistics
● Final project partners due this Thursday 3/16
● Final project proposals due next Thursday 3/23
● Homework 4: Grace Hopper Conference

○ Due Tuesday 3/28 by 4pm
○ May not be able to finish part 2 until next week
○ Last homework! If you haven’t used your late day

2

Constraints
● Recall: many decision problems involve checking if

there is a solution that satisfies certain constraints
● A constraint is just a rule that limits which possible

solutions are acceptable
● Ex: CNF-SAT

● Solution: a truth assignment
● Constraints: in each clause, at least one variable is

assigned to True

3

Constraint Satisfaction
● A constraint satisfaction problem is defined by:

○ a set of variables, each with its own range of values
○ a set of constraints

● A candidate solution is any assignment of vars to values
● Candidate solutions that satisfy all constraints are feasible

4

Constraint Programming
● “Like IP, but with more complex constraints”

○ Combinatorial constraints, possibly non-linear
● OR-Tools has a new constraint programming

solver called CP-SAT
● Behind the scenes: turns constraints

into clauses, then uses SAT solver!
○ vast oversimplification...

● Very successful! “State of the art”

5

Results of Minizinc CP Challenge 2021

CP-SAT Documentation
● For reference (variables, constraints):

google.github.io/or-tools/python/ortools/sat/python/cp_model.html

● Recommended: keep a tab open while working with CP-SAT
until you memorize all the constraints

6

http://google.github.io/or-tools/python/ortools/sat/python/cp_model.html

Basic Variables in CP-SAT
● model.NewIntVar(lower_bnd, upper_bnd, name)

● model.NewBoolVar(name)
○ Equivalent to model.NewIntVar(0, 1, name)

● Returns newly created variable (just like MIP)
● CP-SAT only works over discrete, finite domains

○ No NumVars, integers only!
○ No infinite bounds

7

Linear Constraints in CP-SAT
● Adding/scalar multiplying vars gives a (linear) expression
● Linear expr. with an (in)equality gives a linear constraint

○ Unlike MIP, we can also use not equals (!=)

● Unlike MIP, coefficients must also be integers
○ If you have fractional coefficients, you need to scale them up to

integers or use MIP solver instead

● model.Add(linear_constraint)

8

Basic Nonlinear Constraints
● model.AddAbsEquality(target, var)

○ Adds constraint: target == |var|

● model.AddMultiplicationEquality(target, [v1,v2])
○ Adds constraint: target == v1 * v2

● model.AddMaxEquality(target, var_arr)
○ Adds constraint: target == Max(var_arr)

● Annoying: no first-class nonlinear expressions; must build up complex
math expressions piece-by-piece using intermediate variables
○ OR-Tools is really for combinatorial optimization, not equations

9

The AllDifferent Constraints
● model.AddAllDifferent(var_arr)

● Forces all vars in the array to take on different values!
● Very common in practice

○ Esp. for assignment problems, scheduling, etc.

10

Classic Example: Cryptarithms
● In a cryptarithmetic puzzle, want to replace each letter

with a different digit to make the arithmetic valid
○ no leading zeros

11

S E N D

+ M O R E

M O N E Y

9 5 6 7

+ 1 0 8 5

1 0 6 5 2

Classic Example: Cryptarithms
Constraint program:
● Variables for each letter, most with range [0...9]

○ 𝑆,𝑀 have range [1...9], since no leading zeros
● Constraint 1: the arithmetic expression holds
● Constraint 2: all vars have different value

12

S E N D

+ M O R E

M O N E Y

Cryptarithms in OR-Tools
● Initializing the model and declaring variables

13

S E N D

+ M O R E

M O N E Y

1

1

Cryptarithms in OR-Tools
● Add arithmetic and all different constraints (yes, that easy!)

14

S E N D

+ M O R E

M O N E Y

Cryptarithms in OR-Tools
● Solve and print the solution

● Output:

15

S E N D

+ M O R E

M O N E Y

Optimization with CP-SAT
● We can also maximize/minimize an expression, e.g.

16

The Element Constraint
● model.AddElement(index, var_arr, target)

● Adds constraint: target == var_arr[index]
● Useful because index can be a variable
● The var_arr can also contain constants!

17

The Inverse Constraint
● model.AddInverse(var_arr, inv_arr)

● The arrays should have the same size 𝑛 (can’t use dicts)
● The vars in both arrays can only take values from 0 to 𝑛 − 1
● Adds the following constraints:

○ If var_arr[i] == j, then inv_arr[j] == i
○ If inv_arr[j] == i, then var_arr[i] == j

● Intuition: sets up a “perfect matching” between the two sets
of variables

18

x0

The Inverse Constraint
● model.AddInverse([x0,x1,x2,x3], [y0,y1,y2,y3])

19

x1

x2

x3

y0

y1

y2

y3

= 0

= 2

= 3

= 1

0 =

3 =

1 =

2 =

Ex: Taxi Assignment
● A taxi service has 𝑛 customers waiting for pickup
● There are 𝑛 taxis available, one for each customer
● We know the distance between each taxi and customer
● Want to assign taxis to customers in order to minimize the

total distance traveled by all taxis (save gas)
○ See code example (taxis.py) for worked solution

20

Interval Variables
● CP-SAT has special variables that provide “syntactic sugar” for

representing time intervals
● model.NewIntervalVar(start, duration, end, name)

● Represents an interval, enforcing end - start == duration

○ start, end, duration can be constants or variables!
● Note: there is no way to access start, end, duration of an

interval by default
○ Recommended: directly add them as fields of the interval object

21

Interval Variables
● Note: there is no way to access start, end, duration of an

interval by default
○ Recommended: directly add them as fields of the interval, e.g.

interval.start = start

● model.AddNoOverlap(interval_arr)

● Powerful constraint: enforces that all intervals in the array do
not overlap with each other!
○ It’s OK to have shared start/endpoints

22

Job Shop Scheduling
● 𝑚 machines that do tasks which take varying time to finish

○ Machines can do only one task at a time
○ Once a task is started, it must be finished

● 𝑛 jobs, each consisting of a list of tasks
○ Each task must be performed on one specific machine
○ Each task in a job cannot be started until the previous

task in the job finished
● Goal: minimize the makespan (time to finish all jobs)

23

Ex: Job Shop Scheduling
● 3 machines, numbered 0, 1, 2
● Tasks are pairs of (which machine, time required)
● 3 jobs:

24

Ex: Job Shop Scheduling
● Sample feasible (not optimal) solution

● What’s the makespan of this solution?
○ See code example (jobshop.py) for worked solution

25

