Lecture 8:
~Intro to Constraint
- Programming

mailto:rohanmenezes@alumni.upenn.edu

Logistics

Final project partners due this Thursday 3/16
Final project proposals due next Thursday 3/23
Homework 4. Grace Hopper Conference
Due Tuesday 3/28 by 4pm
May not be able to finish part 2 until next week
Last homework! If you haven't used your late day

Constraints

Recall. many decision problems involve checking if
there is a solution that satisfies certain constraints
A constraint is just a rule that limits which possible
solutions are acceptable

Ex: CNF-SAT

Solution: a truth assignment

Constraints: in each clause, at least one variable is
assigned to True

Constraint Satisfaction

A constraint satisfaction problem is defined by:

a set of variables, each with its own range of values

a set of constraints
A candidate solution is any assignment of vars to values
Candidate solutions that satisfy all constraints are feasible

Constraint Programming

‘Like IP, but with more complex constraints”
Combinatorial constraints, possibly non-linear

OR-Tools has a new constraint programming
solver called CP-SAT

Behind the scenes:; turns constraints Results of Minizinc CP Challenge 2021

into clauses, then uses SAT solver! =
vast oversimplification... Fixed

Very successful! “State of the art”

Free
Parallel
Open

Local Search

CP-SAT Documentation

For reference (variables, constraints):

google.qithub.io/or-tools/python/ortools/sat/python/cp_modelhtml

Recommended: keep a tab open while working with CP-SAT
until you memorize all the constraints

http://google.github.io/or-tools/python/ortools/sat/python/cp_model.html

Basic Variables in CP-SAT

model .NewIntVar (lower bnd, upper bnd, name)

model . NewBoolVar (name)
Equivalent to model .NewIntVar (0, 1, name)

Returns newly created variable (just like MIP) IN CASE OF EMERGENCY

CP-SAT only works over discrete, finite domains
No NumVars, integers only!
No infinite bounds cp_model.INT_MAX

BREAK GLASS

Linear Constraints in CP-SAT

Adding/scalar multiplying vars gives a (linear) expression

Linear expr. with an (in)equality gives a linear constraint
Unlike MIP, we can also use not equals (!=)

Unlike MIP, coefficients must also be integers

If you have fractional coefficients, you need to scale them up to
integers or use MIP solver instead

model .Add (linear constraint)

Basic Nonlinear Constraints

model .AddAbsEquality (target, wvar)
Adds constraint. target == |var|

model .AddMultiplicationEquality (target, [v1l,v2])
Adds constraint. target == vl * v2

model .AddMaxEquality (target, var arr)
Adds constraint: target == Max (var arr)

Annoying: no first-class nonlinear expressions; must build up complex
math expressions piece-by-piece using intermediate variables
OR-Tools is really for combinatorial optimization, not equations

The AllDifferent Constraints

model .AddAllDifferent (var_arr)

Forces all vars in the array to take on different values!

Very common in practice
Esp. for assignment problems, scheduling, etc.

Classic Example: Cryptarithms

In a cryptarithmetic puzzle, want to replace each letter
with a different digit to make the arithmetic valid

no leading zeros

S END 9 5 6 7

+ MORE :: + 1 085

Classic Example: Cryptarithms

Constraint program:
Variables for each letter, most with range [0...9]
S, M have range [1..9], since no leading zeros
Constraint 1. the arithmetic expression holds
Constraint 2: all vars have different value

Cryptarithms in OR-Tools

Initializing the model and declaring variables

from ortools.sat.python import cp_model

model = cp_model.CpModel()
model.NewIntVar(1,
model.NewIntVar(o,
model.NewIntVar(o,
model.NewIntVar(o,
model.NewIntVar(1,
model.NewIntVar(o,
model.NewIntVar(o,
model.NewIntVar(o,

< 2V O X2 O =2 mwnm
N’ S’ N N NN N NS

S
=
N
D
M
0
R
Y

Cryptarithms in OR-Tools

Add arithmetic and all different constraints (yes, that easy!)

model .Add(

1000*S + 100*E + 10*N + D
1000*M + 100*0 + 10*R + E
== 10000*M + 1000*0 + 100*N + 10*E + Y S END

)
model.AddAl1Different([S,E,N,D,M,0,R,Y])

Cryptarithms in OR-Tools

Solve and print the solution

solver = cp_model.CpSolver()
if solver.Solve(model) == cp _model.OPTIMAL:
print([f'{v}={solver.Value(v)}' for v in [S,E,N,D,M,0,R,Y]])

Optimization with CP-SAT

We can also maximize/minimize an expression, e.g.

model.Maximize(7*a + b)

model.Minimize(

sum(x[1] for 1 in range(10))

)

The Element Constraint

model .AddElement (index, var arr, target)

Adds constraint: target == var arr[index]

Useful because index can be a variable

The var arr can also contain constants!

The Inverse Constraint

model .AddInverse (var_arr, inv_arr)
The arrays should have the same size n (can't use dicts)

The vars in both arrays can only take values from0ton —1

Adds the following constraints:
If var arr[i] == j,theninv arr[j] == 1
If inv arr[j] == i,thenvar arr[i] ==]

Intuition: sets up a "perfect matching” between the two sets
of variables

The Inverse Constraint

e model.AddInverse([x,,%x,,%,,%3], [Yo,¥1,¥2,¥3])

Ex: Taxi Assighment

A taxi service has n customers waiting for pickup
There are n taxis available, one for each customer
We know the distance between each taxi and customer

Want to assign taxis to customers in order to minimize the
total distance traveled by all taxis (save gas)

See code example (taxis.py) for worked solution

Interval Variables

CP-SAT has special variables that provide “syntactic sugar” for
representing time intervals

model .NewIntervalVar (start, duration, end, name)
Represents an interval, enforcing end - start == duration
start, end, duration can be constants or variables!

Note: there is no way to access start, end, duration ofan
interval by default

Recommended: directly add them as fields of the interval object

Interval Variables

Note: there is no way to access start, end, duration ofan
interval by default

Recommended: directly add them as fields of the interval, e.g.
interval.start = start

model . AddNoOverlap (interval arr)

Powerful constraint: enforces that all intervals in the array do
not overlap with each other!

It's OK to have shared start/endpoints

Job Shop Scheduling

m machines that do tasks which take varying time to finish
Machines can do only one task at a time
Once a task is started, it must be finished

n jobs, each consisting of a list of tasks
Each task must be performed on one specific machine
Each task in a job cannot be started until the previous
task in the job finished

Goal: minimize the makespan (time to finish all jobs)

Ex: Job Shop Scheduling

3 machines, numbered 0, 1, 2
Tasks are pairs of (which machine, time required)
3 jobs:

jobs_data = [
[(6, 3), (1, 2), (2, 2)],

[(e, 2), (2, 1), (1, 4)],
[(1, 4), (2, 3)]

Ex: Job Shop Scheduling

Sample feasible (not optimal) solution

machine 0 0 W § job 0
machine 1 //,,//,//f//f// %/ job 1
i ./

/ / /
/ / / /
/ / / /

machine 2 job 2

A A
l l T 1 1
2 4 6 8

[

What's the makespan of this solution?
See code example (jobshop.py) for worked solution

