

# Lecture 8: Intro to Constraint

Programming

Rohan Menezes <u>rohanmenezes@alumni.upenn.edu</u>

### Logistics

- Final project partners due **this Thursday 3/16**
- Final project proposals due **next Thursday 3/23**
- Homework 4: Grace Hopper Conference
  - Due Tuesday 3/28 by 4pm
  - May not be able to finish part 2 until next week
  - Last homework! If you haven't used your late day

### Constraints

- Recall: many decision problems involve checking if there is a solution that satisfies certain constraints
- A **constraint** is just a rule that limits which possible solutions are acceptable
- Ex: CNF-SAT
  - Solution: a truth assignment
  - Constraints: in each clause, at least one variable is assigned to True



### **Constraint Satisfaction**

- A constraint satisfaction problem is defined by:
  - o a set of **variables**, each with its own range of **values**
  - o a set of **constraints**
- A candidate solution is any assignment of vars to values
- Candidate solutions that satisfy all constraints are **feasible**

### **Constraint Programming**

- "Like IP, but with more complex constraints"
  - Combinatorial constraints, possibly non-linear
- OR-Tools has a new constraint programming solver called **CP-SAT**
- Behind the scenes: turns constraints into clauses, then uses SAT solver!
  - vast oversimplification...
  - Very successful! "State of the art"

### Results of Minizinc CP Challenge 2021

| Category     | Gold           | Silver                |
|--------------|----------------|-----------------------|
| Fixed        | SICStus Prolog | JaCoP                 |
| Free         | OR-Tools       | PicatSAT              |
| Parallel     | OR-Tools       | PicatSAT              |
| Open         | OR-Tools       | sunny-cp <sup>—</sup> |
| Local Search | Yuck           | OscaR/CBLS            |

### **CP-SAT Documentation**

• For reference (variables, constraints):

google.github.io/or-tools/python/ortools/sat/python/cp\_model.html

• Recommended: keep a tab open while working with CP-SAT until you memorize all the constraints

### **Basic Variables in CP-SAT**

- model.NewIntVar(lower\_bnd, upper\_bnd, name)
- model.NewBoolVar(name)
  - Equivalent to model.NewIntVar(0, 1, name)
- Returns newly created variable (just like MIP)
- CP-SAT **only** works over discrete, finite domains
  - No NumVars, integers only!
  - No infinite bounds



### **Linear Constraints in CP-SAT**

- Adding/scalar multiplying vars gives a (linear) expression
- Linear expr. with an (in)equality gives a linear constraint
   Onlike MIP, we can also use not equals (!=)
- Unlike MIP, coefficients **must** also be integers
  - If you have fractional coefficients, you need to scale them up to integers or use MIP solver instead
  - model.Add(linear\_constraint)

### **Basic Nonlinear Constraints**

- model.AddMultiplicationEquality(target, [v1,v2])
   Adds constraint: target == v1 \* v2
- model.AddMaxEquality(target, var\_arr)
   Adds constraint: target == Max(var arr)
- Annoying: no first-class nonlinear expressions; must build up complex math expressions piece-by-piece using intermediate variables
   OD Table is really for combinatorial entimization not equations
  - OR-Tools is really for combinatorial optimization, not equations

### **The AllDifferent Constraints**

- model.AddAllDifferent(var\_arr)
- Forces all vars in the array to take on different values!
- Very common in practice
  - Esp. for assignment problems, scheduling, etc.

## **Classic Example: Cryptarithms**

• In a cryptarithmetic puzzle, want to replace each letter with a <u>different</u> digit to make the arithmetic valid

• no leading zeros



## **Classic Example: Cryptarithms**

### Constraint program:

Variables for each letter, most with range [0...9]

- *S*, *M* have range [1...9], since no leading zeros
- Constraint 1: the arithmetic expression holds
- Constraint 2: all vars have different value



### **Cryptarithms in OR-Tools**

• Initializing the model and declaring variables

from ortools.sat.python import cp\_model

model = cp\_model.CpModel()

- S = model.NewIntVar(1, 9, 'S')
- E = model.NewIntVar(0, 9, 'E')

N = model.NewIntVar(0, 9, 'N')

D = model.NewIntVar(0, 9, 'D')

M = model.NewIntVar(1, 9, 'M')

0 = model.NewIntVar(0, 9, '0')

R = model.NewIntVar(0, 9, 'R')

Y = model.NewIntVar(0, 9, 'Y')



MONEY

## **Cryptarithms in OR-Tools**

• Add arithmetic and all different constraints (yes, that easy!)

| model.Add(                                          |        |  |  |  |  |  |  |  |
|-----------------------------------------------------|--------|--|--|--|--|--|--|--|
| 1000*S + 100*E + 10*N + D                           |        |  |  |  |  |  |  |  |
| + 1000*M + 100*O + 10*R + E                         |        |  |  |  |  |  |  |  |
| == 10000*M + 1000*O + 100*N + 10*E + Y              | SEND   |  |  |  |  |  |  |  |
| )                                                   | + MORE |  |  |  |  |  |  |  |
| <pre>model.AddAllDifferent([S,E,N,D,M,O,R,Y])</pre> |        |  |  |  |  |  |  |  |
|                                                     | MONEY  |  |  |  |  |  |  |  |
|                                                     |        |  |  |  |  |  |  |  |

## **Cryptarithms in OR-Tools**

• Solve and print the solution

solver = cp\_model.CpSolver()
if solver.Solve(model) == cp\_model.OPTIMAL:
 print([f'{v}={solver.Value(v)}' for v in [S,E,N,D,M,O,R,Y]])



### **Optimization with CP-SAT**

• We can also maximize/minimize an expression, e.g.

model.Maximize(7\*a + b)

model.Minimize(
 sum(x[i] for i in range(10))

### **The Element Constraint**

- model.AddElement(index, var\_arr, target)
- Adds constraint: target == var\_arr[index]
- Useful because index can be a variable
- The var\_arr can also contain constants!

### **The Inverse Constraint**

- model.AddInverse(var\_arr, inv\_arr)
- The arrays should have the same size *n* (can't use dicts)
- The vars in both arrays can only take values from 0 to n-1
- Adds the following constraints:
  - o lf var\_arr[i] == j, then inv\_arr[j] == i
  - o lf inv\_arr[j] == i, then var\_arr[i] == j
- Intuition: sets up a "perfect matching" between the two sets of variables

### **The Inverse Constraint**

• model.AddInverse( $[x_0, x_1, x_2, x_3]$ ,  $[y_0, y_1, y_2, y_3]$ )



### **Ex: Taxi Assignment**



- A taxi service has *n* customers waiting for pickup
- There are *n* taxis available, one for each customer
- We know the distance between each taxi and customer
- Want to assign taxis to customers in order to minimize the total distance traveled by all taxis (save gas)
  - See code example (taxis.py) for worked solution

### **Interval Variables**

- CP-SAT has special variables that provide "syntactic sugar" for representing time intervals
- model.NewIntervalVar(start, duration, end, name)
- Represents an interval, enforcing end start == duration
  - start, end, duration can be constants or variables!
- Note: there is no way to access start, end, duration of an interval by default
  - Recommended: directly add them as fields of the interval object

### **Interval Variables**

- Note: there is no way to access start, end, duration of an interval by default
  - Recommended: directly add them as fields of the interval, e.g. interval.start = start
- model.AddNoOverlap(interval\_arr)
- Powerful constraint: enforces that all intervals in the array do not overlap with each other!
  - It's OK to have shared start/endpoints

### **Job Shop Scheduling**

- *m* machines that do tasks which take varying time to finish
  - Machines can do only one task at a time
  - Once a task is started, it must be finished
- *n* **jobs**, each consisting of a list of tasks
  - Each task must be performed on one specific machine
  - Each task in a job cannot be started until the previous task in the job finished
  - Goal: minimize the makespan (time to finish all jobs)

### **Ex: Job Shop Scheduling**

- 3 machines, numbered 0, 1, 2
- Tasks are pairs of (which machine, time required)
- 3 jobs:

| jobs_d | data | = [ | #   | task | < = | (machi | ne_ | _id, | <pre>processing_time).</pre> |
|--------|------|-----|-----|------|-----|--------|-----|------|------------------------------|
| [ [ (  | (0,  | 3), | (1, | 2),  | (2, | 2)],   | #   | Job  | 0                            |
| [ [ (  | (0,  | 2), | (2, | 1),  | (1, | 4)],   | #   | Job  | 1                            |
| [ [ (  | (1,  | 4), | (2, | 3)]  |     |        | #   | Job  | 2                            |
| ]      |      |     |     |      |     |        |     |      |                              |



• What's the makespan of this solution?

• See code example (jobshop.py) for worked solution