

Lecture 6: More Mixed-Integer Programming

Rohan Menezes <u>rohanmenezes@alumni.upenn.edu</u>

Logistics

- Homework 3: Kidney Exchange Program
 - Due after break: 3/14 at 4pm
 - Use MIP to build a model that saves lives IRL!
- No class on 3/7 (spring break)
- Next week: guest lecture!

Next Week

Recap: LP and MIP

- Linear programming: maximize/minimize linear objective subject to linear (in)equalities
- **Mixed-integer programming:** same as linear programming, but some variables can take on integer values only
 - NP-complete!

Modeling Fixed Costs

Suppose it costs \$10 to produce each unit of a product
Also **fixed setup cost** of \$250 if we produce any units

cost to produce *n* units =
$$\begin{cases} 0, & n = 0\\ 250 + 10n, & n \ge 1 \end{cases}$$

Indicators for Constraints

• Idea: want to create a 0/1 indicator variable *c* where c = 0 if we don't produce any product and c = 1 if we do, i.e.

$$c = \begin{cases} 0, & n = 0\\ 1, & n \ge 1 \end{cases}$$

cost to produce *n* units = 250c + 10n

Indicators for Constraints

- More generally, can create indicator c for constraint $n \geq b$ if we have bounds $L \leq n-b \leq U$
 - Can replace n with any linear expression $a_1n_1 + a_2n_2 + \dots + a_kn_k$, but it needs to be integer-valued
- To enforce $(c = 1) \Rightarrow (n \ge b)$, add constraint:

 $n-b \ge L(1-c)$

• To enforce $(c = 0) \Rightarrow (n \le b - 1)$, add constraint:

 $n-b \le (U+1)c-1$

Modeling Fixed Costs

• So to make an indicator c for $n \ge 1$, add:

 $n \le (U+1)c$

- If minimizing cost, don't need to enforce $(c = 1) \Rightarrow (n \ge 1)$
 - Why? Equivalent to $(n = 0) \Rightarrow (c = 0)$
 - Since cost is 250c + 10n, solver will set c = 0 if possible when minimizing

- Your model is INFEASIBLE when it shouldn't be... what to do?
- Want to find which buggy constraint(s) cannot be satisfied

- Typical model has thousands, even millions of constraints
- Insight: bugs usually happen at the level of groups of constraints, not individual constraints

• If we get rid of all buggy constraint groups, the model should become feasible

- **Strategy:** remove groups one-by-one until model is feasible, then add them back to find minimal set of buggy groups
 - Even better: use a "binary search" strategy (remove half the constraint groups at a time)
 - See demo (mip_debugging.py)

- What if the model is feasible, but the solution is wrong?
- If it's easy to see that a constraint is violated, check that one
- Otherwise, just add constraints enforcing a known "right" solution, and then model will become infeasible
 - If you don't have a known solution, enforce whatever property is violated in the wrong solution (e.g. objective <= 300)

How do MIP solvers work?

- Most fundamental technique: branch and bound
 - Chess engines work using branch and bound too ("alpha-beta pruning")
- For simplicity, let's assume that all integer variables have lower and upper bounds
 - $O \quad \operatorname{lb}(x) \le x \le \operatorname{ub}(x)$

Naive Branching

- Want to solve MIP *P* where integer variables are bounded
- What's a first step for tree traversal of the search space?
- Idea: split the domain of a variable in half
 - Generates subproblems which can be solved recursively
- Pick whichever subproblem has the higher objective value, and discard infeasible solutions

Naive Branching (Pseudocode)

```
# find the optimal objective value for P
naive(P):
    if lb = ub for all vars:
        if P violates a constraint:
            return INFEASIBLE (-inf)
            return objective_value(P)
        let x be a variable with lb(x) < ub(x)
        let m = [(lb(x) + ub(x)) / 2]
        return max{naive(P|x ≤ m), naive(P|x ≥ m)}
```

How bad is Naive Branching?

- Does naive branching even terminate?
 - Only for pure integer programs!
- Which assignments does the algorithm discard or visit?
 - Need to evaluate both branches -- visits all feasible solutions!
- Basically the same as brute force
- Runtime scales with size of search space

Recall: LP Relaxation

- For a MIP *P*, we get its **LP relaxation** *LP*(*P*) by allowing all variables to be fractional
 - Can't just round LP solution
- **Key observation:** the LP solution is always at least as good as the MIP solution (by objective value)
- Corollary: if all integer vars take integer values in optimal solution to LP(P), then it is also optimal solution to P

Adding Inference

- Idea: since LP is polytime-solvable, use LP solver as inference engine!
- Instead of recursing until all variables have one value, solve *LP(P)* and check whether all integer variables have integer values
- Branch on integer variable x whose value v is fractional in LP(P)
 - Create subproblems $x \leq \lfloor v \rfloor$ and $x \geq \lfloor v \rfloor$

Pruning Fruitless Nodes

- Idea: discard partial solutions that will never yield a better objective value than one we've already found
- If we've seen a MIP solution with a better objective value than *LP(P)*, discard *P* since any integer solution can only be worse

Branch & Bound

- First version developed by Ailsa Land and Alison Harcourt in 1960
- Combines branching of solution space with bounds-based pruning
- B&B is an **algorithm paradigm**: a "meta-algorithm" that can be used to design algorithms for many different optimization algorithms

Branch & Bound (Pseudocode)

```
# find the optimal objective value for P
# best seen is the best objective value so far
branch and bound (P, best seen = -inf):
    let LP soln = solve LP(LP(P))
    if LP soln = INFEASIBLE: return INFEASIBLE
    if objective value(LP soln) \leq best seen:
        return -inf
    if LP soln satisfies integrality constraints of P:
        return objective value(LP soln)
    let x be an int var with fractional value v in LP soln
    let obj1 = branch and bound (P|x \le |v|, best seen)
    set best seen = max{obj1, best seen}
    let obj2 = branch and bound (P|x \ge [v], best seen)
    return max{obj1, obj2}
```


- $\max \quad f(x,y) = 5x + 8y$
- s.t. $5x + 9y \le 45$ $1.1x + 1.2y \le 7$ $x, y \in [0..100]$

f(2.31, 3.72)
= 41.28

max f(x, y) = 5x + 8ys.t. $5x + 9y \le 45$ $1.1x + 1.2y \le 7$ $x, y \in [0..100]$

Iterative Branch & Bound

```
# find the optimal objective value for P_0
branch and bound (P_0):
  let best seen = -inf
  let subproblems to visit = \{P_0\}
  while to visit is nonempty:
    let P = subproblems to visit.pop()
    let LP soln = solve LP(LP(P))
    if LP soln = INFEASIBLE: continue
    if objective value(LP soln) \leq best seen: continue
    if LP soln satisfies integrality constraints for P:
      set best seen = objective value(LP soln)
      continue
    let x be an int var with fractional value v in LP soln
    subproblems to visit.add(branch and bound(P|x \le |v|))
    subproblems to visit.add(branch and bound(P|x \ge [v]))
  return best seen
```


Tuning Branch & Bound

- What choices can we make when implementing branch and bound?
- Which subproblem to visit next?
 - Visit first-added subproblem (BFS)
 - Visit last-added subproblem (DFS)
 - Visit subproblem with best LP objective ("best-first search")
- Which variable to branch on?
 - Most constrained variable (smallest domain, e.g. booleans)
 - Largest/smallest coefficient in objective function
 - Closest/farthest to halfway between integers (e.g. value of 0.5)
 - Most solvers allow user to tune these based on knowledge of problem

Improving B&B with Cuts

- Informally, a **cut** for a MIP *P* is a new constraint (inequality) that doesn't eliminate any feasible solutions for *P*, but does for *LP*(*P*)
 - Tighter LP relaxation means we convergence faster to MIP solution!

Branch & Cut

- If we can find cuts of MIP, then add them and recurse on new MIP!
 - How to find cuts? Out of scope method based on simplex algorithm
- Otherwise, branch to create subproblems as before
- Proposed by Manfred Padberg and Giovanni Rinaldi in 1989

The Knapsack Problem

• Given *n* items with values v_1, \ldots, v_n and weights w_1, \ldots, w_n , select maximum-value subset to fit into a knapsack with capacity *W*.

Fractional Knapsack

- What if items are subdivisible? Want to decide how much of each item to take (as a fraction from 0 to 1).
- Intuitively, do we want to prioritize... most valuable items? Lightest items? Something else?
- **Greedy algorithm:** Sort items by value-to-weight ratio. Take as much of each item as possible, in order, until knapsack is full.

0/1 Knapsack

- In the 0/1 knapsack problem, we either select an item or we don't.
- Does greedy algorithm still work?
 - No: 0/1 knapsack is NP-complete!
- Other (NP-complete) forms:
 - Multiple knapsacks
 - Multi-dimensional knapsack
 - Bin-packing

MIP for 0/1 Knapsack

• MIP formulation is very straightforward:

maximize $\sum_{i=1}^{n} x_i v_i$

subject to $\sum_{i=1}^{n} x_i w_i \leq W$

- Why use MIP instead of...
 - O(nW) dynamic programming algorithm
 - $O(n \lg n)$ approximation algorithm (at least 50% of optimal)

B&B for Knapsack

• How can we use branch and bound as an **algorithm paradigm** for the 0/1 knapsack problem (without using MIP)?

```
b&b knapsack(items, W, best seen):
    let fractional soln = greedy fractional(items, W)
    if value(fractional soln) \leq best seen:
        return -inf
    if fractional soln has no fractionally-selected items:
        return value(fractional soln)
    let x be a fractionally-selected item in fractional soln
    let obj1 = b&b knapsack(items - \{x\}, W, best seen)}
    set best seen = max{obj1, best seen}
    let obj2 = v(x) + b\&b \ knapsack(items - \{x\}, W - w(x), best seen - v(x))
    return max{obj1, obj2}
```