Lecture 6:
- More Mixed-Integer
- Programming

mailto:rohanmenezes@alumni.upenn.edu

Logistics

Homework 3: Kidney Exchange Program
Due after break: 3/14 at 4pm
Use MIP to build a model that saves lives IRL!

No class on 3/7 (spring break)
Next week: guest lecture!

)

* %
* %
R
* %
* %

g@cag|

e 3 <
& @ %
= — & » & i
A RS ' I A-LEAGUE
B k2 o \ 4L
B OISl
\n o B~ L -
o7, r R Al NE | gy e)
A "-": » @‘u i o) .‘" MAJOR LEAGUE BASEBALL
V] R ace2’s) ’
S8 4 . T
o (IE .
RS —1- e b
1ol of
! ' —) CRICKET
2 e A 1 WoRLh
: SEBR \9'\'\3'5015
EURO2016

FRANCE

R

Recap: LP and MIP

Linear programming: maximize/minimize linear
objective subject to linear (in)equalities
Mixed-integer programming: same as linear
programming, but some variables can take on integer

values only
NP-complete!

Modeling Fixed Costs

Suppose it costs $10 to produce each unit of a product
Also fixed setup cost of $250 if we produce any units

n=20

cost to produce n units = {250 +10m, n>1

TOTAL COST

QUANTITY PRODUCED

Looks nonlinear... how to model with MIP?

Indicators for Constraints

|dea: want to create a 0/1 indicator variable c where ¢ =0
if we don't produce any product and ¢ = 1 if we do, i.e.

Then we can model the fixed cost as;

cost to produce n units = 250c + 10n

Indicators for Constraints

More generally, can create indicator ¢ for constraint n = b if we
have boundsL<n—-b <U

Can replace n with any linear expression a;ny + a,n, + -+ + a;n;, but it
needs to be integer-valued

To enforce (c = 1) = (n = b), add constraint:
n—b=L(1—-c)
To enforce (c =0) = (n <b-—1), add constraint;
n—b<U+1)c—-1

Modeling Fixed Costs

So to make an indicator ¢ forn > 1, add:
n< U+ 1)c

If minimizing cost, dont needtoenforce (c=1)=>n=>1)
Why? Equivalentto (n = 0) = (c = 0)
Since cost is 250¢ + 10n, solver will set ¢ = 0 if possible when minimizing

Debugging Integer Programs

Your model is INFEASTIRLE when it
shouldn't be.. what to do?

Want to find which buggy constraint(s)
cannot be satisfied

Debugging Integer Programs

Typical model has thousands, even millions of constraints

Insight: bugs usually happen at the level of groups of
constraints, not individual constraints

for j in range(num_jobs):
solver.Add(
sum(x[c, j] for c in range(num_cpus)) == } group

)

sum(x[c, j] for c in cluster for j in range(num_jobs)) <= 2

for cluster in élusters:
solver.Add(group

)

Debugging Integer Programs

If we get rid of all buggy constraint groups, the model
should become feasible

Strategy: remove groups one-by-one until model is feasible,
then add them back to find minimal set of buggy groups

Even better: use a "binary search’ strategy (remove half the
constraint groups at a time)

See demo (mip_debugging.py)

Debugging Integer Programs

What if the model is feasible, but the solution is wrong?
If it's easy to see that a constraint is violated, check that one

Otherwise, just add constraints enforcing a known “right”
solution, and then model will become infeasible

If you don't have a known solution, enforce whatever property is violated
in the wrong solution (e.g. objective <= 300)

How do MIP solvers work?

Most fundamental technique: branch and bound

Chess engines work using branch and bound too (“alpha-beta pruning”)

For simplicity, let's assume that all integer
variables have lower and upper bounds

Ib(x) < x < ub(x)

Naive Branching

Want to solve MIP P where integer variables are bounded

What's a first step for tree traversal of the search space?
Idea: split the domain of a variable in half

Generates subproblems which can be solved recursively

Pick whichever subproblem has the higher objective value,
and discard infeasible solutions

Naive Branching (Pseudocode)

find the optimal objective value for P

naive (P) :

if 1b = ub for all wvars:

if P violates a constraint:

return INFEASIBLE (-inf)

return objective value (P)
let x be a variable with 1lb(x) < ub (x)
let m = |(1lb(x) + ub(x)) / 2]
return max{naive (P|x < m), naive(P|x = m)}

How bad is Naive Branching?

Does naive branching even terminate?
Only for pure integer programs!

Which assignments does the algorithm discard or visit?
Need to evaluate both branches -- visits all feasible solutions!

Basically the same as brute force

Runtime scales with size of search space

Recall: LP Relaxation

Fora MIP P, we get its LP relaxation LP(P) by allowing all
variables to be fractional

Can't just round LP solution

Key observation: the LP solution (5x + 8y
is always at least as good as the
MIP solution (by objective value)

8(3.75) = 41.25

Corollary: if all integer vars take
integer values in optimal solution
to LP(P), then itis also optimal
solutionto P

N

Adding Inference

Idea: since LP is polytime-solvable, use LP solver as inference engine!

Instead of recursing until all variables have one value, solve LP(P) and
check whether all integer variables have integer values

Branch on integer variable x whose value v is fractional in LP(P)
Create subproblems x < |v] and x = [v]

Pruning Fruitless Nodes

Idea: discard partial solutions that will never yield a better objective
value than one we've already found

If we've seen a MIP solution with a better
objective value than LP(P), discard P since
any integer solution can only be worse

Branch & Bound

First version developed by Ailsa Land and Alison Harcourt in 1960

Combines branching of solution space with bounds-based pruning

B&B is an algorithm paradigm: a "‘meta-algorithm” that can be used to
design algorithms for many different optimization algorithms

Branch & Bound (Pseudocode)

find the optimal objective wvalue for P
best seen is the best objective value so far

branch and bound (P, best seen = -inf):
let LP soln = solve LP(LP(P))
if LP soln = INFEASIBLE: return INFEASIBLE
if objective value (LP_soln) < best seen:
return -inf
if LP soln satisfies integrality constraints of P:
return objective value (LP_soln)
let x be an int var with fractional value v in LP_soln
let objl = branch and bound(P|x < |v|, best seen)
set best seen = max{objl, best seen}
let obj2 = branch and bound(P|x = [v], best seen)
return max{objl, obj2}

Example: Branch & Bound

max
s.t.

f(x,y) =5x + 8y
5x + 9y < 45
1llx+12y <7

x,y € [0..100]

£(2.31,3.72)
= 41.28

Example: Branch & Bound

max
s.t.

f(x,y) =5x + 8y
5x + 9y < 45
1llx+12y <7

x,y € [0..100]

£(2.31,3.72)
= 41.28
y
£(2,3.889)
= 41.111

Example: Branch & Bound

max f(x,y) =5x + 8y f(i3i.13222)
st 5x + 9y < 45 y
1lix+12y <7 7(2,3.889)
x,y € [0..100] = 4L
y<3

f(2,3)
=34

Example: Branch & Bound

max f(x,y) =5x + 8y f(i3i.13222)
st 5x + 9y < 45 y :
1lix+12y <7 7(2,3.889)
x,y € [0..100] = 4L
y<3 y=4

M £(2,3) £(18,4)

=34 = 41

Example: Branch & Bound

max f(x,y) =5x + 8y f(%3i.13222)
st 5x + 9y < 45 y
1lix+12y <7 7(2,3.889)
x,y € [0..100] = 4L
y<3 y=>4
m f23) f(18,4)
| = 34 =41
x‘y
£(1,4.444)
= 40.555

Example: Branch & Bound

max f(x,y) =5x + 8y f(%31,13222)
1llx+12y <7 (2 3.889)
x,y € [0..100] = bl
y<3 y=>4
f(2,3) £(1.8,4)
= 34 = 41
xy
f(1,4.444)
= 40.555
y
f(,4)

Example: Branch & Bound

max f(x,y) =5x + 8y
st 5x + 9y < 45
1llx+12y <7

x,y € [0..100]

£(2.31,3.72)
= 41.28
y
f(2,3.889)
= 41.111
y<3 yz4
f(2,3) f(1.8,4)
= 34 = 41
x‘y
£(1,4.444)
= 40.555
W
f(1,4) f(0,5)
= 37 =40

Example: Branch & Bound

max
s.t.

f(x,y) = 5x + 8y
5x +9y < 45
11x+12y <7
x,y € [0..100]

£(2.31,3.72)
= 41.28
y
£(2,3.889)
= 41.111
y<3 y=4
f(2,3) f(1.8,4)
=34 = 41
x<1 x =2
f(1,4.444)
= 40.555
y<4 y=5
f(1,4) f(0,5)
=37 =40

Example: Branch & Bound

max f(x,y) =5x + 8y f(§31.13é22)
s.t. 5x +9y < 45 x<2 x>3
1lix+12y <7 £(2,3.889) 7(3,3.083)
x,y € [0..100] = 41.111 = 39.666
, y <3 y=4
f(2,3) f(1.8,4)
=34 = 41
x<1
£(1,4.444)
= 40.555
f(1,4) f(0,5)
=37 = 40

Example: Branch & Bound

max f(x,y) =5x + 8y f(§31.13é22)
s.t. 5x +9y < 45 x<2 x>3
1lix+12y <7 7(2,3.889) TS
x,y € [0..100 = bl = 39.666
Y [] y <3 y =4 |}
£(2,3) £(1.8,4) %
=34 = 41
x<1
£(1,4.444)
= 40.555
f(1,4) £(0,5)
=37 = 40

Iterative Branch & Bound

find the optimal objective value for P,
branch and bound (P,) :
let best seen = -inf
let subproblems to visit = {P,}
while to_visit is nonempty:
let P = subproblems to visit.pop()
let LP soln = solve LP(LP(P))
if LP soln = INFEASIBLE: continue
if objective value (LP_soln) < best seen: continue
if LP soln satisfies integrality constraints for P:
set best seen = objective value (LP_soln)
continue
let x be an int var with fractional value v in LP_soln
subproblems to visit.add(branch and bound(P|x < [v]))
subproblems to visit.add(branch and bound(P|x = [v]))
return best seen

Tuning Branch & Bound

What choices can we make when implementing branch and bound?

Which subproblem to visit next?
Visit first-added subproblem (BFS)
Visit last-added subproblem (DFS)
Visit subproblem with best LP objective (‘best-first search”)

Which variable to branch on?
Most constrained variable (smallest domain, e.g. booleans)
Largest/smallest coefficient in objective function
Closest/farthest to halfway between integers (e.g. value of 0.5)

Most solvers allow user to tune these based on knowledge of problem

Improving B&B with Cuts

e Informally, a cut for a MIP P is a new constraint (inequality) that doesn't
eliminate any feasible solutions for P, but does for LP(P)

O Tighter LP relaxation means we convergence faster to MIP solution!

Branch & Cut

If we can find cuts of MIP, then add them and recurse on new MIP!

How to find cuts? Out of scope - method based on simplex algorithm

Otherwise, branch to create subproblems as before

Proposed by Manfred Padberg and Giovanni Rinaldi in 1089

I\ ,ﬁ;ﬂﬂ‘: .
AW | i
Wlli NN,
I i e

The Knapsack Problem

Given n items with values vy, ..., v, and weights wy, ...w,,, select
maximum-value subset to fit into a knapsack with capacity W.

=

100 oz., $2,000

0.5 oz., $500

Max Weight: 400 oz.

w2

200 oz., $5,000

1 oz., $5,000

Fractional Knapsack

What if items are subdivisible? Want to decide how much of
each item to take (as a fraction from 0 to 1).

Intuitively, do we want to prioritize... most valuable items?
Lightest items? Something else?

Greedy algorithm: Sort items by value-to-weight ratio. Take as
much of each item as possible, in order, until knapsack is full.

0/1 Knapsack

In the 0/1 knapsack problem, we either select an item or we don't.

Does greedy algorithm still work?
No: 0/1 knapsack is NP-complete!

Other (NP-complete) forms:
Multiple knapsacks

Multi-dimensional knapsack 100 oz., $2,000

Bin-packing

Max Weight: 300 oz.

MIP for 0/1 Knapsack

MIP formulation is very straightforward:
maximize Y, x;v;
subjectto Y xw; < W
Why use MIP instead of..

O (nW) dynamic programming algorithm
0(n lgn) approximation algorithm (at least 50% of optimal)

B&B for Knapsack

How can we use branch and bound as an algorithm paradigm
for the 0/1 knapsack problem (without using MIP)?

b&b knapsack(items, W, best seen):
let fractional soln = greedy fractional (items, W)
if value(fractional soln) < best seen:

return -inf
if fractional soln has no fractionally-selected items:
return value (fractional soln)
let x be a fractionally-selected item in fractional soln
let objl = b&b _knapsack(items - {x}, W, best seen)}
set best seen = max{ob]jl, best seen}
let obj2 = v(x) + b&b_knapsack(items - {x}, W - w(x), best _seen - v(x))
return max{objl, obj2}

