
Lecture 6:
More Mixed-Integer
Programming
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 189

mailto:rohanmenezes@alumni.upenn.edu

Logistics
● Homework 3: Kidney Exchange Program

○ Due after break: 3/14 at 4pm
○ Use MIP to build a model that saves lives IRL!

● No class on 3/7 (spring break)
● Next week: guest lecture!

2

Next Week

3

Recap: LP and MIP
● Linear programming: maximize/minimize linear

objective subject to linear (in)equalities
● Mixed-integer programming: same as linear

programming, but some variables can take on integer
values only
○ NP-complete!

4

Modeling Fixed Costs
● Suppose it costs $10 to produce each unit of a product
● Also fixed setup cost of $250 if we produce any units

cost to produce 𝑛 units = .0, 𝑛 = 0
250 + 10𝑛, 𝑛 ≥ 1

5

Modeling Fixed Costs

6

v

Looks nonlinear... how to model with MIP?

Indicators for Constraints
● Idea: want to create a 0/1 indicator variable 𝑐 where 𝑐 = 0

if we don’t produce any product and 𝑐 = 1 if we do, i.e.

𝑐 = %0, 𝑛 = 0
1, 𝑛 ≥ 1

● Then we can model the fixed cost as:

cost to produce 𝑛 units = 250𝑐 + 10𝑛

7

Indicators for Constraints
● More generally, can create indicator 𝑐 for constraint 𝑛 ≥ 𝑏 if we

have bounds 𝐿 ≤ 𝑛 − 𝑏 ≤ 𝑈
○ Can replace 𝑛 with any linear expression 𝑎!𝑛! + 𝑎"𝑛" +⋯+ 𝑎#𝑛# , but it

needs to be integer-valued

● To enforce (𝑐 = 1) ⇒ (𝑛 ≥ b), add constraint:

𝑛 − 𝑏 ≥ 𝐿(1 − 𝑐)

● To enforce 𝑐 = 0 ⇒ 𝑛 ≤ b − 1 , add constraint:

𝑛 − 𝑏 ≤ 𝑈 + 1 𝑐 − 1

8

Modeling Fixed Costs
● So to make an indicator 𝑐 for 𝑛 ≥ 1, add:

𝑛 ≤ 𝑈 + 1 𝑐

● If minimizing cost, don’t need to enforce (𝑐 = 1) ⇒ (𝑛 ≥ 1)
○ Why? Equivalent to (𝑛 = 0) ⇒ (𝑐 = 0)
○ Since cost is 250𝑐 + 10𝑛, solver will set 𝑐 = 0 if possible when minimizing

9

Debugging Integer Programs
● Your model is INFEASIBLE when it

shouldn’t be… what to do?

● Want to find which buggy constraint(s)
cannot be satisfied

10

Debugging Integer Programs
● Typical model has thousands, even millions of constraints

● Insight: bugs usually happen at the level of groups of
constraints, not individual constraints

11

}
}

group

group

Debugging Integer Programs
● If we get rid of all buggy constraint groups, the model

should become feasible

● Strategy: remove groups one-by-one until model is feasible,
then add them back to find minimal set of buggy groups
○ Even better: use a “binary search” strategy (remove half the

constraint groups at a time)

● See demo (mip_debugging.py)

12

Debugging Integer Programs
● What if the model is feasible, but the solution is wrong?

● If it’s easy to see that a constraint is violated, check that one

● Otherwise, just add constraints enforcing a known “right”
solution, and then model will become infeasible
○ If you don’t have a known solution, enforce whatever property is violated

in the wrong solution (e.g. objective <= 300)

13

How do MIP solvers work?
● Most fundamental technique: branch and bound

○ Chess engines work using branch and bound too (“alpha-beta pruning”)

● For simplicity, let’s assume that all integer
variables have lower and upper bounds
○ lb 𝑥 ≤ 𝑥 ≤ ub(𝑥)

14

Naive Branching
● Want to solve MIP 𝑃 where integer variables are bounded
● What’s a first step for tree traversal of the search space?
● Idea: split the domain of a variable in half

○ Generates subproblems which can be solved recursively

● Pick whichever subproblem has the higher objective value,
and discard infeasible solutions

15

Naive Branching (Pseudocode)
find the optimal objective value for 𝑃

naive(𝑷):
if lb = ub for all vars:

if 𝑷 violates a constraint:
return INFEASIBLE (-inf)

return objective_value(𝑷)
let 𝑥 be a variable with lb(𝑥) < ub(𝑥)
let m = ⌊(lb(𝑥) + ub(𝑥)) / 2⌋
return max{naive(𝑷|𝒙 ≤ m), naive(𝑷|𝒙 ≥ m)}

16

How bad is Naive Branching?
● Does naive branching even terminate?

○ Only for pure integer programs!

● Which assignments does the algorithm discard or visit?
○ Need to evaluate both branches -- visits all feasible solutions!

● Basically the same as brute force
● Runtime scales with size of search space

17

Recall: LP Relaxation
● For a MIP 𝑃, we get its LP relaxation 𝐿𝑃(𝑃) by allowing all

variables to be fractional
○ Can’t just round LP solution

18

𝐦𝐚𝐱 𝟓𝒙 + 𝟖𝒚● Key observation: the LP solution
is always at least as good as the
MIP solution (by objective value)

● Corollary: if all integer vars take
integer values in optimal solution
to 𝐿𝑃(𝑃), then it is also optimal
solution to 𝑃

Adding Inference
● Idea: since LP is polytime-solvable, use LP solver as inference engine!

● Instead of recursing until all variables have one value, solve 𝐿𝑃(𝑃) and
check whether all integer variables have integer values

● Branch on integer variable 𝑥 whose value 𝑣 is fractional in 𝐿𝑃(𝑃)
○ Create subproblems 𝑥 ≤ ⌊𝑣⌋ and 𝑥 ≥ ⌈𝑣⌉

19

Pruning Fruitless Nodes
● Idea: discard partial solutions that will never yield a better objective

value than one we’ve already found

20

● If we’ve seen a MIP solution with a better
objective value than 𝐿𝑃(𝑃), discard 𝑃 since
any integer solution can only be worse

Branch & Bound
● First version developed by Ailsa Land and Alison Harcourt in 1960
● Combines branching of solution space with bounds-based pruning
● B&B is an algorithm paradigm: a “meta-algorithm” that can be used to

design algorithms for many different optimization algorithms

21

Branch & Bound (Pseudocode)
find the optimal objective value for 𝑃

best_seen is the best objective value so far

branch_and_bound(𝑷, best_seen = -inf):
let LP_soln = solve_LP(𝑳𝑷(𝑷))
if LP_soln = INFEASIBLE: return INFEASIBLE
if objective_value(LP_soln) ≤ best_seen:

return -inf
if LP_soln satisfies integrality constraints of 𝑷:

return objective_value(LP_soln)
let 𝑥 be an int var with fractional value 𝒗 in LP_soln
let obj1 = branch_and_bound(𝑷|𝒙 ≤ ⌊𝒗⌋, best_seen)
set best_seen = max{obj1, best_seen}
let obj2 = branch_and_bound(𝑷|𝒙 ≥ ⌈𝒗⌉, best_seen)
return max{obj1, obj2}

22

Example: Branch & Bound

23

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

𝑓(2.31, 3.72)
= 41.28

Example: Branch & Bound

24

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2

𝑓(2, 3.889)
= 41.111

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

25

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

26

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2

𝑦 ≥ 4

𝑓(1.8, 4)
= 41

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

27

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2

𝑦 ≥ 4

𝑓(1.8, 4)
= 41

𝑥 ≤ 1

𝑓(1, 4.444)
= 40.555

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

28

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2

𝑦 ≥ 4

𝑓(1.8, 4)
= 41

𝑥 ≤ 1

𝑓(1, 4.444)
= 40.555

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

𝑦 ≤ 4

𝑓(1, 4)
= 37

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

29

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2

𝑦 ≥ 4

𝑓(1.8, 4)
= 41

𝑥 ≤ 1

𝑓(1, 4.444)
= 40.555

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

𝑦 ≤ 4

𝑓(1, 4)
= 37

𝑓(0, 5)
= 40

𝑦 ≥ 5

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

30

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2

𝑦 ≥ 4

𝑥 ≥ 2

𝑓(1.8, 4)
= 41

𝑥 ≤ 1

𝑓(1, 4.444)
= 40.555

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

𝑦 ≤ 4

𝑓(1, 4)
= 37

𝑓(0, 5)
= 40

𝑦 ≥ 5

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

31

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2 𝑥 ≥ 3

𝑦 ≥ 4

𝑥 ≥ 2

𝑓(1.8, 4)
= 41

𝑥 ≤ 1

𝑓(1, 4.444)
= 40.555

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

𝑦 ≤ 4

𝑓(1, 4)
= 37

𝑓(0, 5)
= 40

𝑦 ≥ 5

𝑓(3, 3.083)
= 39.666

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Example: Branch & Bound

32

𝑓(2.31, 3.72)
= 41.28

𝑥 ≤ 2 𝑥 ≥ 3

𝑦 ≥ 4

𝑥 ≥ 2

𝑓(1.8, 4)
= 41

𝑥 ≤ 1

𝑓(1, 4.444)
= 40.555

𝑦 ≤ 3

𝑓(2, 3)
= 34

𝑓(2, 3.889)
= 41.111

𝑦 ≤ 4

𝑓(1, 4)
= 37

𝑓(0, 5)
= 40

𝑦 ≥ 5

𝑓(3, 3.083)
= 39.666

max 𝑓 𝑥, 𝑦 = 5𝑥 + 8𝑦
s.t. 5𝑥 + 9𝑦 ≤ 45

1.1𝑥 + 1.2𝑦 ≤ 7
𝑥, 𝑦 ∈ [0. . 100]

Iterative Branch & Bound
find the optimal objective value for 𝑃!
branch_and_bound(𝑷𝟎):
let best_seen = -inf
let subproblems_to_visit = {𝑷𝟎}
while to_visit is nonempty:
let 𝑷 = subproblems_to_visit.pop()
let LP_soln = solve_LP(𝐋𝐏(𝑷))
if LP_soln = INFEASIBLE: continue
if objective_value(LP_soln) ≤ best_seen: continue
if LP_soln satisfies integrality constraints for 𝑷:
set best_seen = objective_value(LP_soln)
continue

let 𝑥 be an int var with fractional value 𝒗 in LP_soln
subproblems_to_visit.add(branch_and_bound(𝑷|𝒙 ≤ ⌊𝒗⌋))
subproblems_to_visit.add(branch_and_bound(𝑷|𝒙 ≥ ⌈𝒗⌉))

return best_seen
33

Tuning Branch & Bound
● What choices can we make when implementing branch and bound?

● Which subproblem to visit next?
○ Visit first-added subproblem (BFS)
○ Visit last-added subproblem (DFS)
○ Visit subproblem with best LP objective (“best-first search”)

● Which variable to branch on?
○ Most constrained variable (smallest domain, e.g. booleans)
○ Largest/smallest coefficient in objective function
○ Closest/farthest to halfway between integers (e.g. value of 0.5)

● Most solvers allow user to tune these based on knowledge of problem

34

Improving B&B with Cuts
● Informally, a cut for a MIP 𝑃 is a new constraint (inequality) that doesn’t

eliminate any feasible solutions for 𝑃, but does for 𝐿𝑃(𝑃)
○ Tighter LP relaxation means we convergence faster to MIP solution!

35

Branch & Cut
● If we can find cuts of MIP, then add them and recurse on new MIP!

○ How to find cuts? Out of scope – method based on simplex algorithm

● Otherwise, branch to create subproblems as before

● Proposed by Manfred Padberg and Giovanni Rinaldi in 1989

36

The Knapsack Problem
● Given 𝑛 items with values 𝑣2, … , 𝑣3 and weights 𝑤2, …𝑤3, select

maximum-value subset to fit into a knapsack with capacity 𝑊.

37

0.5 oz., $500

Fractional Knapsack
● What if items are subdivisible? Want to decide how much of

each item to take (as a fraction from 0 to 1).

● Intuitively, do we want to prioritize... most valuable items?
Lightest items? Something else?

● Greedy algorithm: Sort items by value-to-weight ratio. Take as
much of each item as possible, in order, until knapsack is full.

38

0.5 oz., $500

Max Weight: 300 oz.

0/1 Knapsack
● In the 0/1 knapsack problem, we either select an item or we don’t.
● Does greedy algorithm still work?

○ No: 0/1 knapsack is NP-complete!

● Other (NP-complete) forms:
○ Multiple knapsacks
○ Multi-dimensional knapsack
○ Bin-packing

39

MIP for 0/1 Knapsack
● MIP formulation is very straightforward:

maximize ∑4523 𝑥4𝑣4
subject to ∑4523 𝑥4𝑤4 ≤ 𝑊

● Why use MIP instead of…
○ 𝑂(𝑛𝑊) dynamic programming algorithm
○ 𝑂(𝑛 lg 𝑛) approximation algorithm (at least 50% of optimal)

40

B&B for Knapsack
● How can we use branch and bound as an algorithm paradigm

for the 0/1 knapsack problem (without using MIP)?

41

b&b_knapsack(items, 𝑾, best_seen):
let fractional_soln = greedy_fractional(items, 𝑾)
if value(fractional_soln) ≤ best_seen:

return -inf
if fractional_soln has no fractionally-selected items:

return value(fractional_soln)
let 𝑥 be a fractionally-selected item in fractional_soln
let obj1 = b&b_knapsack(items – {𝒙}, 𝑾, best_seen)}
set best_seen = max{obj1, best_seen}
let obj2 = 𝒗(𝒙) + b&b_knapsack(items – {𝒙}, 𝑾 – 𝒘(𝒙), best_seen – 𝒗(𝒙))
return max{obj1, obj2}

