
Lecture 4:
Modern Techniques
in SAT Solving
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 189

mailto:jediahkrohanmenezes@alumni.upenn.edu

Recap: Iterative DPLL
dpll(𝜑):

if unit_propagate() = CONFLICT: return UNSAT
while not all variables have been set:

let 𝒙 = pick_variable()
create new decision level
set 𝒙 = T
while unit_propagate() = CONFLICT:

if decision_level = 0: return UNSAT
backtrack()
set x = F

return SAT

2

Chronological Backtracking
● DPLL uses chronological backtracking: when we find a

conflict, backtrack to the previous decision level

● Issue: might reach conflicts (contradictions) caused by the
same underlying reason over and over again

3

𝟏 ∨ 𝟐

𝟏 ∨ 𝟑 ∨ 𝟒

𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒

Chronological Backtracking

4

Chronological Backtracking

5

1
T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟑 ∨ 𝟒

𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒

Chronological Backtracking

6

UNSAT subformula
1

T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟑 ∨ 𝟒

𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒

Chronological Backtracking

7

UNSAT subformula
1

T

Need to rule out all
assignments of 2, 3, 4,
but issue was really
caused by 1 = 𝑇!

𝟏 ∨ 𝟐

𝟏 ∨ 𝟑 ∨ 𝟒

𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒
&𝟏 ∨ 𝟑 ∨ 𝟒

Backjumping
● Not every decision actually contributes to a conflict

● Idea: upon conflict, instead of backtracking one level to
the last decision, backjump to an important decision

○ i.e., a decision that contributed to the conflict

● But how do we know what is an important decision?

8

Implication Graphs
● An implication graph G is a DAG whose vertices are literal

assignments at a particular decision level
○ Ex: 𝑥@3 represents setting 𝑥 to False at level 3
○ Assignments can be decisions or due to unit propagation/backtracking

● Can also contain special vertex ⊥ representing a conflict
● There is an edge 𝑥@𝑖 → 𝑦@𝑗 if the assignment 𝑥@𝑖 directly

implied the assignment 𝑦@𝑗
○ i.e., 𝑦@𝑗 was set by unit propagation from a clause containing 𝑥

9

Implication Graphs

10

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

11

1@1

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

12

1@1

2@2

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

13

1@1

3@3

2@2

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

14

1@1

3@3

4@3
𝑐!

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

15

1@1

3@3

5@4

4@3
𝑐!

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

16

1@1

3@3

5@4

4@3

6@4𝑐"

𝑐!

𝑐"

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

17

1@1

3@3

5@4

4@3

6@4

7@4
𝑐"

𝑐!

𝑐#

𝑐#

𝑐"

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

18

1@1

3@3

5@4

4@3

6@4

7@4

8@4

𝑐"

𝑐!

𝑐#

𝑐#

𝑐"

𝑐$

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

19

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Implication Graphs

20

Conflict!

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Conflicts
● A conflict set of assignments (collectively) imply a conflict
● A conflict cut in an implication graph is a bipartition of the

vertices V = R ∪ C such that:
○ Reason side R contains all decisions (source nodes)
○ Conflict side C contains the conflict node (a sink)
○ No edges cross C → R, only R → C

● The set of vertices with an outgoing edge crossing a given
conflict cut forms a conflict set

21

Ex: Conflict Cuts

22

Conflict set: {1, 2, 3, 5}

Conflict set: {1, 7}

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2
𝑐!

Conflict set: {1, 4, 6 }

CONFLICT SIDE

And more...

REASON SIDE

Conflict set: {1, 8, 9 }

Clause Learning
● Observation: Given a conflict set {𝑥!, 𝑥", … , 𝑥#}, we know at

least one literal in the set must be False
● Can derive the conflict clause 𝑥! ∨ 𝑥" ∨ ⋯∨ 𝑥#
● Conflict-driven clause learning (CDCL): add conflict clauses

to the original CNF we’re solving
○ Introduced by GRASP (1996); revolutionized SAT solving
○ Many solvers have aggressive deletion policy for long, “inactive,”

“unhelpful” learned clauses – avoid explosion in CNF size

23

Asserting Clauses
● Many conflict cuts – how do we decide which to

choose to build a conflict clause?
● Goal: after backjumping, be able to apply new

knowledge from learned clause right away
○ Want learned clause to become a unit clause right

after backjumping

24

Asserting Clauses
● A learned clause is asserting if it contains only one

variable set on the same decision level as conflict
○ Is it possible for any conflict clause to contain zero?

● Observation: iff a clause is asserting, it will become
a unit clause after backtracking

● How far can we backjump and still have asserting
clauses become unit clauses?
○ Backjump to second-largest (i.e., deepest) decision level in

asserting clause (or zeroth level if asserting clause has size 1)
■ i.e., return to that decision level (don’t undo the decision)

○ Called the asserting level

25

CDCL (Pseudocode)

26

cdcl(𝜑):
if unit_propagate() = CONFLICT: return UNSAT
while not all variables have been set:

let 𝒙 = pick_variable()
create new decision level; set 𝒙 = T
while unit_propagate() = CONFLICT:

if level = 0: return UNSAT
let (conflict_cls, assrt_lvl) = analyze_conflict()
let 𝜑 = 𝜑 ∪ { conflict_cls }
discard all assignments after asserting level
backjump(assrt_lvl)

return SAT

Asserting Level Backjump

27

Conflict!

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

Asserting Level Backjump

28

Conflict set: 1, 2, 3, 5
Asserting level = 3 (from 3@3)

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9
𝑐: 1 ∨ 2 ∨ 3 ∨ 5

Asserting Level Backjump

29

1@1

Backjump!

3@3

2@2

4@3
𝑐!

𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9
𝑐: 1 ∨ 2 ∨ 3 ∨ 5

Asserting Level Backjump

30

1@1

3@3

2@2

4@3
𝑐!

𝑐!

Unit!

5@3

𝑐

𝑐 𝑐

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9
𝑐: 1 ∨ 2 ∨ 3 ∨ 5

Asserting Level Backjump

31

1@1

3@3

2@2

4@3
𝑐!

𝑐!

Unit!

5@3

𝑐

𝑐 𝑐

Wait a second... same outcome as
backtracking with DPLL.

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9
𝑐: 1 ∨ 2 ∨ 3 ∨ 5

Unique Implication Points
● Unique implication point (UIP): a node in the

implication graph that all paths from the most recent
decision variable to the conflict must pass through

● Intuition: at the decision level of the conflict, the UIP
is a literal that, by itself, implies a contradiction

32

UIPs 1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2 𝑐!

The 1-UIP Scheme
● The “first” UIP is the closest UIP to the conflict node

○ i.e., the “rightmost”
● When we reach a conflict, cut after the first UIP

○ Generally produces shortest learned clauses

33
First UIP

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2 𝑐!

1-UIP Backjump

34

Conflict!

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2
𝑐!

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9

1-UIP Backjump

35

Conflict!

1@1

3@3

5@4

4@3

6@4

7@4

8@4

9@4

⊥
𝑐"

𝑐!

𝑐# 𝑐%

𝑐#

𝑐"

𝑐$

𝑐%
𝑐&

𝑐&

𝑐&

2@2
𝑐!

Conflict set: {1, 7}

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9
𝑐: 1 ∨ 7

1-UIP Backjump

36

1@1
Backjump!𝑐!: 2 ∨ 3 ∨ 4

𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9
𝑐: 1 ∨ 7

1-UIP Backjump

37

1@1

Unit!

7@1

𝑐

𝑐!: 2 ∨ 3 ∨ 4
𝑐": 3 ∨ 5 ∨ 6
𝑐#: 4 ∨ 6 ∨ 7
𝑐$: 7 ∨ 8
𝑐%: 1 ∨ 7 ∨ 9
𝑐&: 1 ∨ 8 ∨ 9
𝑐: 1 ∨ 7

Restarts
● Problem: if we make bad early guesses, can get stuck in

fruitless areas of search tree
● Solution: periodically restart the search – throw away the

current partial assignment
○ Modern solvers favor aggressive restart policy

■ MiniSAT, PicoSAT: every ~100 conflicts
● Key idea: CDCL is deterministic, so why won’t we end up

back where we were?
○ Learned clauses remain in formula after restart

38

Incremental SAT Solving

39

● CDCL solvers give us a new method in our toolkit!

add_clause(𝐶): add clause 𝐶 to the formula
● New clauses can only rule out previously satisfying assignments
● Can re-solve CNF with new clauses added
● Key: keep learned clauses generated during last call to solve()
● Simple use case: generating all satisfying assignments

Introducing: PennSAT
● HW2: PennSAT (due on Tue 2/21 by 4pm)
● Features:

○ DPLL-based
○ Iterative
○ Maintains propagation queue
○ No Two-Watched Literals
○ Static most-frequent decision heuristic

● This assignment is tricky – start early!
○ Requires solid understanding

40

Testing a SAT Solver
● SAT solvers have tons of complicated logic... how to check

for soundness bugs?
○ Hard and tedious to figure out all cases to unit test

● Random testing: generate random CNF formulas to test
against reference solver

● If reference solver is not available, can at least check that
satisfying assignments are valid

41

Debugging a SAT Solver
● Once we’ve found a bug, how do we find the

mistake in the code?
● Print debugging: stick a bunch of print statements

in relevant places and look at the console
● Easy, but not as effective for complex systems

○ Easy to forget to print something, or print in wrong place

42

Debugging a SAT Solver

43

Debugging in VS Code
● Debugger: allows us to stop program mid-execution,

run code line-by-line, inspect values of local variables

● Breakpoint: STOP at this line of code
44

Debugging in VS Code
● After breakpoints set: Run > Start Debugging (F5)

45

View or modify current variables & values

Stopped right before line 49!

Hover over variables to inspect values

Debugging in VS Code
● Control flow:

● Continue (F5): run until next breakpoint hit
● Step Over (F10): run just one more line of code
● Restart (Ctrl+Shift+F5): start over from beginning
● Stop (Shift+F5): quit the debugger

46

Debugging in VS Code
● Step Into (F11): enter code of first function called

on the current line and resume debugging there
● Step Out (Shift+F11): run until the current function

returns; resume debugging from parent function
● Can click to view different levels of the call stack

○ Useful for inspecting values of local vars in different scopes

47

Debugging in VS Code

48

+

References

49

A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.

E. Torlak, “A Modern SAT Solver,” CSE507: Computer-Aided Reasoning for Software Engineering. [Online]. Available:
https://courses.cs.washington.edu/courses/cse507/.

V. Ganesh, On the Unreasonable Effectiveness of Boolean SAT Solvers. Saarbrücken, Germany: Max Planck Institute, 2017.
Available:
https://docs.google.com/a/gsd.uwaterloo.ca/viewer?a=v&pid=sites&srcid=Z3NkLnV3YXRlcmxvby5jYXxtYXBsZXNhdHxneDoz
YzQ3NDJjYjk4YWE4YTA0

J. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki. “Understanding VSIDS Branching Heuristics in Conflict-Driven
Clause-Learning SAT Solvers.” Hardware and Software: Verification and Testing Lecture Notes in Computer Science, 2015, 225–41.
https://doi.org/10.1007/978-3-319-26287-1_14.

