Lecture 4:
- Modern Techniques
- In SAT Solving

mailto:jediahkrohanmenezes@alumni.upenn.edu

Recap: Iterative DPLL

dpll (@) :
if unit propagate() = CONFLICT: return UNSAT

while not all wvariables have been set:
let x = pick variable()
create new decision level
set x =T

while unit propagate() = CONFLICT:
if decision level = 0: return UNSAT
backtrack ()

set x = F
return SAT

Chronological Backtracking

DPLL uses chronological backtracking: when we find a
conflict, backtrack to the previous decision level

Issue: might reach conflicts (contradictions) caused by the
same underlying reason over and over again

Chronological Backtracking

(1v2)

(1v3va)
(1v3va)
(1v3v4)
(1v3v4)

Chronological Backtracking

(1v2)

(iv3v4)))
(*v§v4)

(Tv3v4)

(-V§VZ)

_

Chronological Backtracking

(1v2)

(tv3v4) UNSAT subformula JD

Chronological Backtracking

(1v2)
(BV 3v4) UNSAT subformula

- Need to rule out all
(1Lv3Vv4) assignments of 2, 3, 4,

— but issue was really
(1\/3\/4) caused by 1 = T!
(#¥v3va)
/4 \ /7 N

Backjumping

Not every decision actually contributes to a conflict

Idea: upon conflict, instead of backtracking one level to
the last decision, backjump to an important decision

l.e., a decision that contributed to the conflict

But how do we know what is an important decision?

Implication Graphs

An implication graph G is a DAG whose vertices are literal
assignments at a particular decision level

Ex: x@3 represents setting x to False at level 3
Assignments can be decisions or due to unit propagation/backtracking

Can also contain special vertex L representing a conflict

There is an edge x@i — y@j if the assignment x@i directly
implied the assignment y@j

e, y@j was set by unit propagation from a clause containing x

Implication Graphs

c;: 2V3Vv4
¢, 3V5V6
c3: 4V6V7
Cy: 7V 8

c: 1Vv7Vv9
ce: 1vV8V9

Implication Graphs

c;: 2V3Vv4
¢, 3V5V6
c3: 4V6V7
Cy: 7V 8

c: 1V7V9
ce: 1V8VO9

Implication Graphs

c;: 2v3v4
¢, 3V5V6
c3: 4V6V7
Cy: 7V 8

c: 1V7V9
ce: 1V8VO9

Implication Graphs

c;: 2v3Vv4
¢, 3V5V6
c3: 4V6V7
Cy: 7V 8
c: 1V7V9
ce: 1V8VO9

Implication Graphs

2v3vi4
3V5V6
4vov7
7v8

1v7vo9
1v8Vv9

Implication Graphs

2v3vi4
3v5V6
4vov7
7v8

1v7vo9
1v8Vv9

Implication Graphs

c;: 2v3Vv4
c,: 3VI5V6
c3: 4Vvev7
Cy: 7V 8

c: 1V7V9
ce: 1V8VO9

Implication Graphs

c;: 2v3Vv4
c,: 3VI5V6
c3: 4VveVv7
Cy: 7V 8

cs: 1VIZVO
ce: 1V8VO9

Implication Graphs

c;: 2v3Vv4
c,: 3VI5V6
c3: 4VveVv7
Cy: 7V 8

cs: 1VIZV9
ce: 1V8VI

Implication Graphs

c;: 2v3Vv4
c,: 3VI5V6
c3: 4VveVv7
Cy: 7V 8

cs: 1VIZV9
ce: 1V8VI

Implication Graphs

c;: 2v3Vv4
c,: 3VI5V6
ci: BVEVT
Cy: 7V 8

cs: 1VIZV9
ce: 1V8V9 Conflict!

~ Conflicts PR

e A conflict set of assignments (collectively) imply a conflict

e A conflict cut in an implication graph is a bipartition of the
vertices V = R U C such that;

o Reason side R contains all decisions (source nodes)
o Conflict side C contains the conflict node (a sink)
o NoedgescrossC— R, onlyR—C

e The set of vertices with an outgoing edge crossing a given
conflict cut forms a conflict set

21

Ex: Conflict Cuts
REASON SIDE @ Z

Conflict set: {1, 7}

Conflict set: {1,2,3,5} Conflict set: {1,4,6}

And more...

Clause Learning

Observation: Given a conflict set {x;, x5, ..., xx }, Wwe know at
least one literal in the set must be False

Can derive the conflict clause (x; Vx, V-V x;)
Conflict-driven clause learning (CDCL): add conflict clauses
to the original CNF we're solving

Introduced by GRASP (1990); revolutionized SAT solving

Many solvers have aggressive deletion policy for long, ‘inactive,’

‘unhelpful’ learned clauses - avoid explosion in CNF size

Asserting Clauses

Many conflict cuts - how do we decide which to
choose to build a conflict clause?

Goal: after backjumping, be able to apply new
knowledge from learned clause right away

Want learned clause to become a unit clause right
after backjumping

Asserting Clauses

A learned clause is asserting if it contains only one
variable set on the same decision level as conflict
Is it possible for any conflict clause to contain zero?

Observation: iff a clause is asserting, it will become
a unit clause after backtracking

How far can we backjump and still have asserting
clauses become unit clauses?

Backjump to second-largest (i.e., deepest) decision level in
asserting clause (or zeroth level if asserting clause has size 1)

l.e., return to that decision level (don't undo the decision)
Called the asserting level

CDCL (Pseudocode)

cdel (@) :
if unit propagate() = CONFLICT: return UNSAT
while not all variables have been set:
let x = pick variable()
create new decision level; set x = T
while unit propagate() = CONFLICT:
if level = 0: return UNSAT
let (conflict cls, assrt 1lvl) = analyze conflict()
let ¢ = ¢ U { conflict cls }
discard all assignments after asserting level
backjump (assrt 1vl)
return SAT

Asserting Level Backjump

c;: 2v3v4 ‘6
c,: 3V5V6
ci: BVEVT
Cy: 7V 8

cs: 1V7ZVv9
Ce: 1v8Vv9 Conflict!

Asserting Level Backjump

c;: 2v3v4 o
c,: 3VI5EV6 Ger&

ci: BVEVT

¢, TVE @

cs: 1VZV9

ce: 1ViI8V9

e — Conflict set: {1, 2,3, 5}
C: 1LVvi2Vv3V5 Asserting level = 3 (from 3@3)

Asserting Level Backjump

c;: 2v3v4

- Backjump!

Co. 3V5V6

Cs. 4voev7
2Vo D

C4: 7V8 €1 @

cs: 1v7Vv9 ,

ce: 1V8VO Ge2)

c: vi2v3vs

Asserting Level Backjump

c;: 2v3v4
¢, 3V5V6
C3: 4v6vVv7
Cy: 7Vv8

cs: 1v7Vv9
ce: 1V8VO
c: @v2vBvE unit

Asserting Level Backjump

Cq. E V § V Z Wait a second... same outcome as
= = — backtracking with DPLL.

Cz: 3 V 5 V 6

C3: 4‘ V 6 V 7

C,: 7V38

C5: 1 V7V 9

C6: 1 V 8 V 9

c: Mvi2vBv5 unit

Unique Implication Points

Unique implication point (UIP): a node in the
implication graph that all paths from the most recent
decision variable to the conflict must pass through

Intuition: at the decision level of the conflict, the UIP
is a literal that, by itself, implies a contradiction

The 1-UIP Scheme

The “first” UIP is the closest UIP to the conflict node
L.e., the "rightmost’

When we reach a conflict, cut after the first UIP
Generally produces shortest learned clauses

i 4o
First UIP Ce

1-UIP Backjump

c;: 2v3Vv4 .
c,: 3VEV6

c3: 4VevVv7

Cy: 7V 8

cs: 1VIZV9

ce: 1VIBVIQ Conlict!

1-UIP Backjump

c;: 2v3Vv4
c,: 3VEV6
c3: 4VevVv7
Cy: 7V 8

cs: 1VIZV9

ce: 1VIBVIQ Conlict!

S — Conflict set: {1, 7}
c: AV

1-UIP Backjump

c;: 2v3V4

Backjump!
¢, 3V5V6 o
c3: 4v6Vv7
Cy: 7Vv8
c: 1V7V9
ce: 1V8VO

C: TV7

1-UIP Backjump

c;: 2v3V4
¢, 3V5V6
c3: 4V6VY/
Cy: 7V 8

c: 1V7ZV9
ce: 1V8VO

c: 1V 7/ Unit!

Restarts

Problem: if we make bad early guesses, can get stuck in
fruitless areas of search tree

Solution: periodically restart the search - throw away the
current partial assignment
Modern solvers favor aggressive restart policy
MiniSAT, PicOSAT: every ~100 conflicts
Key idea: CDCL is deterministic, so why won't we end up
back where we were?
Learned clauses remain in formula after restart

Incremental SAT Solving

CDCL solvers give us a new method in our toolkit!

add_clause(C): add clause C to the formula
New clauses can only rule out previously satisfying assignments
Can re-solve CNF with new clauses added
Key: keep learned clauses generated during last call to solve()

Simple use case: generating all satisfying assignments

Introducing: PennSAT

HW2: PennSAT (due on Tue 2/21 by 4pm)

Features:
DPLL-based
lterative
Maintains propagation queue
No Two-Watched Literals
Static most-frequent decision heuristic

This assignment is tricky - start early!
Requires solid understanding

Testing a SAT Solver

SAT solvers have tons of complicated logic... how to check
for soundness bugs?

Hard and tedious to figure out all cases to unit test

Random testing: generate random CNF formulas to test
against reference solver

If reference solver is not available, can at least check that
satisfying assignments are valid

Debugging a SAT Solver

Once we've found a bug, how do we find the
mistake in the code?

Print debugging: stick a bunch of print statements
In relevant places and look at the console

Easy, but not as effective for complex systems
Easy to forget to print something, or print in wrong place

Debugging a SAT Solver

swawaswan Usea : AN, X N
BESEES i gger. | 77 piniCWorks ZESTOTEN
e — up o this point.”) s s se—"

Debugging in VS Code

Debugger: allows us to stop program mid-execution,
run code line-by-line, inspect values of local variables

def __init__ (self, n: int, cnf: CNF, activity_he

1f.n = n

J'Bmmkpohﬂ self.cnf = preprocess(cnf)

self.assignment_stack = [[None] * (n+1)]

Breakpoint: STOP at this line of code

Debugging in VS Code

After breakpoints set: Run > Start Debugging (F5)
View or modify current variables & values Hover over variables to inspect values

\/ VARIABLES def __init__[(Jc~'*, n: int, cnf: CNF,
V' Locals
activity heuristic:
> enf: [[26, -99, 7], [-90, 84,..
n: 100 _
.cnf = preprocess(cnf)
v self: < main__ .PennSAT objec..

n: 100

self.assignment_stack = [[None

Stopped right before line 49!

Debugging in VS Code

Control flow: » < ¥ T O 0O

u Continue (F5): run until next breakpoint hit

Step Over (F10): run just one more line of code
Restart (Ctrl+Shift+F5): start over from beginning
E Stop (Shift+F5): quit the debugger

Debugging in VS Code

Step Into (F11): enter code of first function called
on the current line and resume debugging there

Step Out (Shift+F11): run until the current function
returns; resume debugging from parent function

Can click to view different levels of the call stack
Useful for inspecting values of local vars in different scopes

v CALL STACK PAUSED ON STEP __init__ (self, n: int, cnf:

preprocess

__init__ PennSAT.py .n=n
<module> 06

.cnf = preprocess(cnf)

Debugging in VS Code

- preprocess(cnf: CNF) -> CNF:

"""Remove duplicate literals
cnf = [list(set(clause)) for
cnf.sort()

return list(clause for claussd

F __init__ (self, n: int, cnf

.cnf = preprocess(cnf)

- __init___(self, n: int, cnf

self.cnf = preprocess(cnf)

1f.assignment_stack = [[

References

A. Biere, Handbook of satisfiability. Amsterdam: |OS Press, 2009.

E. Torlak, "A Modern SAT Solver," CSE507: Computer-Aided Reasoning for Software Engineering. [Onlinel. Available:
https.//courses.cs.washington.edu/courses/cse507/.

V. Ganesh, On the Unreasonable Effectiveness of Boolean SAT Solvers. Saarbrucken, Germany: Max Planck Institute, 2017.
Available:
https.//docs.google.com/a/gsd.uwaterloo.ca/viewer?a-v&pid=sites&srcid=Z3NkLnV3YXRlcmxvby 5] Y XxtYXBsZXNhdHxneDoz
YzQ3NDJjYjkaYWE4YTAO

J.Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki. “Understanding VSIDS Branching Heuristics in Conflict-Driven
Clause-Learning SAT Solvers." Hardware and Software: Verification and Testing Lecture Notes in Computer Science, 2015, 225-41.
https.//doi.org/10.1007/978-3-319-26287-1_14.

