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Naive Search for SAT
● Naive algorithm: try every possible assignment until we 

find a satisfying assignment or exhaust the search space
● Can interpret this as a DFS:

(search tree)
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Trimming the Search Space
● When we set 𝒙 = 𝑻, what happens to the clauses 

containing 𝒙?
● Observation 1: Any clause containing the positive 

literal 𝑥 becomes satisfied, so we no longer need to 
consider those clauses
○ In logic: 𝑇 ∨ 1 ∨ 2 ∨ ⋯ = 𝑇
○ Significance: we should remove all clauses 

containing x
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Trimming the Search Space
● When we set 𝒙 = 𝑻, what happens to the clauses 

containing 𝒙?
● Observation 2: Any clause containing the negative 

literal 𝑥 needs to be satisfied by a different literal, so 
we can ignore 𝑥 in that clause
○ In logic: 𝐹 ∨ 1 ∨ 2 ∨ ⋯ = 1 ∨ 2 ∨ ⋯
○ Significance: we should remove 𝑥 from all 

clauses containing it
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The Splitting Rule
● The previous observations are called the splitting rule
● After repeatedly applying the splitting rule to formula φ:

○ If there are no clauses left, then all clauses have 
been satisfied, so φ is satisfied
■ 𝜑 = ∅ denotes that there are no clauses left

○ If φ ever contains an empty clause, then all literals 
in that clause are False, so we made a mistake
■ 𝜖 denotes the empty clause
■ 𝜖 ∈ 𝜑 denotes that 𝜑 contains an empty clause
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The Splitting Rule
● The splitting rule allows us to create a smarter recursive 

backtracking algorithm
● Backtracking: repeatedly make a guess to explore partial 

solutions, and if we hit “dead end” (contradiction) then 
undo the last guess
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Backtracking Notation
● For a CNF 𝜑 and a literal 𝑥, define 𝜑|𝑥 (“𝜑 given 𝑥”) to be 

a new CNF produced by:
○ Removing all clauses containing 𝑥
○ Removing 𝑥 from all clauses containing it 

● Conditioning is “commutative”: 𝜑 𝑥! 𝑥" = 𝜑 𝑥" 𝑥!

7



Backtracking (Pseudocode)
# check if 𝜑 is satisfiable

backtrack(𝜑):
if 𝜑 = ∅: return True
if 𝜖 ∈ 𝜑: return False
let 𝑥 = pick_variable(𝜑)
return backtrack(𝜑|𝑥) OR backtrack(𝜑|𝒙)
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Example: Backtracking
𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓
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Example: Backtracking
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Example: Backtracking
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Example: Backtracking
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Example: Backtracking
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Example: Backtracking
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Example: Backtracking
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Example: Backtracking

16

Steps

Conflict!

1 2 3 4 5

T F F T T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

5

F

F

T

T

T

T



Example: Backtracking
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Efficient Splitting
● How do we compute 𝜑|𝑥?
● Goals:

○ Support fast searching for empty clauses
○ Support fast backtracking
○ Fast to actually compute 𝜑|𝑥
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Naïve Idea 1
● Transform 𝜑 into 𝜑|𝑥 by deleting satisfied clauses 

and False literals from 𝜑
○ Deletion not too expensive if we use linked lists

○ Can quickly recognize an empty clause (linked list 
will be empty), but need to check all clauses

○ Big issue: how do we backtrack?
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Naïve Idea 2
● Simple fix: instead of modifying 𝜑 directly, create a 

copy first and modify that
○ Easy backtracking – just restore the old formula

○ Big issue: too expensive (time and memory) to 
copy formula every time we split

■ What if we have hundreds of thousands, 
even millions of clauses?
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Towards a smarter scheme
● Don’t modify or copy the formula

● Observation: if we set 𝑥 = 𝑇, the only clauses that become 
empty must contain 𝑥
○ Store a dictionary mapping each literal to a list of all clauses 

that contain it

○ But we can do even better!`
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1 Watched Literal Scheme
● Observation: a clause can only become empty if it has 

just one unassigned literal remaining
○ Ideally, only need to check these clauses

● Each clause “watches” one literal and maintains watching 
invariant: the watched literal is True or unassigned
○ If the watched literal becomes False, watch another
○ If there are no more True/unassigned literals to 

watch, then the clause must be empty
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1 Watched Literal Scheme
● Watchlists data structure: maps each literal to a list of 

clauses currently watching it
● When setting 𝑥 = 𝑇, only need to check watchlist of 𝑥

○ Suppose we successfully maintain the watching invariant. 
What can we say about the watchlist of 𝑥?
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Example: 1 Watched Literal
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Unit Propagation (UP)
● A unit clause is a clause containing only one literal
● Unit propagation rule: for any unit clause {ℓ}, we 

must set ℓ = 𝑇
● Applying unit propagation can massively speed up 

the backtracking algorithm in practice
○ Combining with the splitting rule can lead to a 

“domino effect” of cascading unit propagation
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The DPLL Algorithm
● Davis-Putnam-Logemann-Loveland (1962)
● Improved upon naive backtracking (search) with unit 

propagation (inference)
● Still the basic algorithm behind most state-of-the-art 

SAT solvers today!

41



DPLL (Pseudocode)
dpll(𝜑):

if 𝜑 = ∅: return TRUE
if 𝜖 ∈ 𝜑: return FALSE
if 𝜑 contains unit clause {ℓ}:

return dpll(𝜑|ℓ)
let 𝑥 = pick_variable(𝜑)
return dpll(𝜑|𝑥) OR dpll(𝜑|𝒙)
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Example: DPLL
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Example: DPLL
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Example: DPLL
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Example: DPLL
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Example: DPLL
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Example: DPLL
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Engineering Matters
● Since the main DPLL subroutine might run 

exponentially many times, every speedup counts
● DPLL spends by far the most time on UP

○ How can we speed this up?
● Although DPLL has a natural recursive formulation, 

recursion is slow — lots of overhead
○ We can make DPLL iterative using a stack
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2 Watched Literals (2WL)
● Key observation: a clause can only be unsatisfied or 

unit if it has at most one non-False literal
○ Optimize unit propagation: only visit those clauses

● Each clause “watches” two literals and maintains 
watching invariant: the watched literals are not False, 
unless the clause is satisfied
○ If a watched literal becomes False, watch another

● If can’t maintain invariant, clause is unit (can propagate)
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2 Watched Literals (2WL)
● Still use watchlists (list of all clauses watching each lit)
● Best part: since backtracking only unassigns variables, 

it can never break the 2WL invariant
○ Don’t need to update watchlists
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𝟏 ∨ 𝟐 ∨ 𝟑
Set 1 = 𝑇 Set 2 = 𝐹

Unit!

𝟏 ∨ 𝟐 ∨ 𝟑 𝟏 ∨ 𝟐 ∨ 𝟑



Iterative DPLL
● A decision refers to any time our algorithm arbitrarily

assigns a variable (without being forced to do so)
○ Selecting a literal and assigning it True is a decision
○ Unit propagation & reassigning selected literal after backtracking 

are not decisions

● All assignments implied by the ith decision are said to 
be on the ith decision level
○ Can assignments ever be on the zeroth decision level?
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Iterative DPLL
● Maintain an assignment stack with the assignments from 

each decision level
○ Whenever we make a new decision, copy the current 

assignment onto the top of the stack
● To backtrack: pop the current assignment off the stack, 

restoring the previous one
● Keep a propagation queue of literals that are set to False

○ Take literals from the queue and check if their 
watching clauses are empty/unit

53



Assignment Stack
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T T F T T

T T F

T

1 2 3 4 5
Set 1 = 𝑇
Set 2 = 𝑇. Propagate 3 = 𝐹. 



Assignment Stack
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T T F

T

1 2 3 4 5
Set 1 = 𝑇
Set 2 = 𝑇. Propagate 3 = 𝐹. 

T T F T T Backtrack!Pop!



Iterative DPLL (Pseudocode)
dpll(𝜑):

if unit_propagate() = CONFLICT: return UNSAT
while not all variables have been set:

let 𝒙 = pick_variable()
create new decision level
set 𝒙 = T
while unit_propagate() = CONFLICT:

if decision_level = 0: return UNSAT
backtrack()
set x = F

return SAT
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Iterative DPLL (Pseudocode)
dpll(𝜑):

if unit_propagate() = CONFLICT: return UNSAT
while not all variables have been set:

let 𝒙 = pick_variable()
create new decision level
set 𝒙 = T
while unit_propagate() = CONFLICT:

if decision_level = 0: return UNSAT
backtrack()
set x = F

return SAT
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How to implement this?



How should we branch?
● Order of assigning variables greatly affects runtime
● Want to find a satisfying assignment quicker and 

find conflicts (rule out bad assignments) quicker

● Ex: 1234, 123, 1235, 235, 345, … , 67, 67,67, 67
○ If we assign 6 first, then we can find conflicts right away
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Decision Heuristics
● Static heuristics: variable ordering fixed at the start
● Dynamic heuristics: variable ordering is updated as 

the solver runs
○ More effective, but also more expensive

● Basic examples of decision heuristics:
○ Random ordering
○ Most-frequent static ordering
○ Most-frequent dynamic ordering
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