Lecture 3:
- Algorithms for SAT

mailto:jediahkrohanmenezes@alumni.upenn.edu

Naive Search for SAT

Naive algorithm: try every possible assignment until we
find a satisfying assignment or exhaust the search space

Can interpret this as a DFS:

(search tree)

Trimming the Search Space

When we set x = T, what happens to the clauses
containing x?

Observation 1: Any clause containing the positive
literal x becomes satisfied, so we no longer need to
consider those clauses

Inlogic.(Tvliv2v:.)=T

Significance: we should remove all clauses
containing x

Trimming the Search Space

When we set x = T, what happens to the clauses
containing x?
Observation 2: Any clause containing the negative

literal x needs to be satisfied by a different literal, so
we can ignore x in that clause

Inlogic. (FvV1v2v:.-)=(AVv2V::)

Significance: we should remove x from all
clauses containing it

The Splitting Rule

The previous observations are called the splitting rule
After repeatedly applying the splitting rule to formula ¢:

If there are no clauses left, then all clauses have
been satisfied, so ¢ is satisfied

¢ = @ denotes that there are no clauses left
If @ ever contains an empty clause, then all literals
iN that clause are False, so we made a mistake

e denotes the empty clause

€ € @ denotes that ¢ contains an empty clause

The Splitting Rule

The splitting rule allows us to create a smarter recursive
backtracking algorithm

Backtracking: repeatedly make a guess to explore partial
solutions, and if we hit "dead end” (contradiction) then
undo the last guess

Backtracking Notation

Fora CNF ¢ and a literal x, define @|x (" given x") to be
a new CNF produced by:

Removing all clauses containing x
Removing x from all clauses containing it
Conditioning is ‘commutative”. @|x;|x, = @|x,]|x;

Backtracking (Pseudocode)

check if ¢ is satisfiable

backtrack (@) :
if ¢ = @: return True
if € € @: return False
let x = pick variable (@)
return backtrack(¢|x) OR backtrack(¢|x)

Example: Backtracking

(1v2) =teps
(1v2v3)
(3v4vs)
(3v4vs)

Example: Backtracking

(Bv2) =teps
(iv2v§)))
(3v4vs)

(3v4vs)

T

Example: Backtracking

(.V .) Conflict! Steps
(1v2v3))
(3v4vs) lﬁj))
(3v4v5)

TOT

Example: Backtracking

(Lv2) =teps
(ivlv§) T
(BVZVE) T F
(3v4vs)

T F

Example: Backtracking

(Lv2) =teps
.V.V.) Conflict!
(3:4\V5)
(3Vv4V5)
|tz]3]4]5

T F T

Example: Backtracking
(Av2) =teps

(1v2v3)

(ngvE)

(3vavs)
L

T F F

Example: Backtracking
(Tv2) =teps

(Tvzvé)
(1

T F F T

Example: Backtracking
(Tv2) =teps

(1v2v3)

T F F T T

Example: Backtracking

(Tv2) =teps
(1v2v3)
(344.\.5.)
(3v4V5)

T F F T F

Efficient Splitting

How do we compute ¢|x?

Goals:
Support fast searching for empty clauses
Support fast backtracking
Fast to actually compute ¢|x

Naive Idea 1

Transform ¢ into @|x by deleting satisfied clauses
and False literals from ¢

Deletion not too expensive if we use linked lists

Can quickly recognize an empty clause (linked list
will be empty), but need to check all clauses

Big issue: how do we backtrack?

Naive Idea 2

Simple fix: instead of modifying ¢ directly, create a
copy first and modify that

Easy backtracking - just restore the old formula

Big issue: too expensive (time and memory) to
copy formula every time we split

What if we have hundreds of thousands,
even millions of clauses?

Towards a smarter scheme

Don't modify or copy the formula

Observation: if we set x = T, the only clauses that become
empty must contain x
Store a dictionary mapping each literal to a list of all clauses
that contain it

But we can do even better!

1 Watched Literal Scheme

Observation: a clause can only become empty if it has
just one unassigned literal remaining

ldeally, only need to check these clauses

Each clause "watches” one literal and maintains watching
invariant: the watched literal is True or unassigned

If the watched literal becomes False, watch another

If there are no more True/unassigned literals to
watch, then the clause must be empty

1 Watched Literal Scheme

Watchlists data structure: maps each literal to a list of
clauses currently watching it

When setting x = T, only need to check watchlist of x

Suppose we successfully maintain the watching invariant.
What can we say about the watchlist of x?

Example: 1 Watched Literal

(Tv2) =ieps
(kv2v3)
(3v4vs)
(3v4vs)

Example: 1 Watched Literal

(Av2) e
(iv2v§)))
(3v4v5)
(3v4vs)

T

Example: 1 Watched Literal

(1vR) e
(1vi2v3) (j//gD
(3v4vs)
(3v4vs)

T

Example: 1 Watched Literal

(1vE) e
(1vi2iv3) T
(3v4vs) ;gj///£>
(3v4vs)

T T

Example: 1 Watched Literal

(1 V.) Conflict! Steps
(1vzv3))
(3v4vs) lﬁj))
(3v4vs)

TOT

Example: 1 Watched Literal

(1vR) e
(Tv.v§) T
(BVZVE) T F
(3v4vs)

T F

Example: 1 Watched Literal

(1vE) e
(1v2v3) T
(BVZVE) T F
(3v4vs)

T F

Example: 1 Watched Literal

(1vE) e
(1v2v@)

(BVZVE)

(3v4vs)

HR R

T F T

Example: 1 Watched Literal

(1v2) Sleps
(I vZv i) Conflict!

(3v4v5)

(3v4avs)

| t]2]3)45

T F T

Example: 1 Watched Literal

(1v2) =ees
(1v2vg)

(3v4vVv5)

(§v4v§)

a

T F F

Example: 1 Watched Literal

(1vR) =ees
(1v2vg)
(3v4v5)
(3v4vs)

T F F

Example: 1 Watched Literal

(1vR2) =tees
(1v2v@)

(3VV5)

(3v4vs)

1] 2]3)45

T F F T

Example: 1 Watched Literal

(1v2) =ees
(1v2v3)

(3v4vs)

(3v4vs)

|+]2]3]4]5

T F F T

Example: 1 Watched Literal
(1v2) Sleps

(1v2vg)
(3v4vgs)
(3v4v§)

T F F T T

Example: 1 Watched Literal
(1vR2) ~teps
(1v2v@d)
(3vavgs) .
?) Conflict

(3vayv

T F F T T

Example: 1 Watched Literal

(1vE) =ees
(1v2vgy)
(3v4vs)
(3v4v5s)

T F F T F

Unit Propagation (UP)

A unit clause is a clause containing only one literal

Unit propagation rule: for any unit clause {#}, we
mustset€ =T

Applying unit propagation can massively speed up
the backtracking algorithm in practice

Combining with the splitting rule can lead to a
‘domino effect’ of cascading unit propagation

The DPLL Algorithm

Davis-Putnam-Logemann-Loveland (1962)

Improved upon naive backtracking (search) with unit
propagation (inference)

Still the basic algorithm behind most state-of-the-art
SAT solvers today!

DPLL (Pseudocode)

dpll (@) :
if ¢ = @: return TRUE
if € € @¢: return FALSE
if ¢ contains unit clause {¥}:
return dpll (¢|?)
let x = pick variable (@)
return dpll(¢|x) OR dpll(¢]|x)

Example: DPLL
(1v2)

(1v2)

(1v2v3)
(1v2v4)

Example: DPLL

(lVE) Unit! Steps
A Lo
(1v2v3)

(Tv2ve)

T

Example: DPLL

(AN2) =teps

(_ v) Conflict! !
(!v!v 3) g
(1v2va)

T F

Example: DPLL

(AN2) =leps
(w2 T F
(Zv2v3) F
(*VZVZ)

B

?ﬂﬂ

Example: DPLL

(AN2) =teps

(i) T
WA =

F T

Example: DPLL
(Av2)

(w2

(2.3,
(1v2va)

F T T

Engineering Matters

Since the main DPLL subroutine might run
exponentially many times, every speedup counts

DPLL spends by far the most time on UP
How can we speed this up?

Although DPLL has a natural recursive formulation,
recursion is slow — lots of overhead

We can make DPLL iterative using a stack

2 Watched Literals (2WL)

Key observation: a clause can only be unsatisfied or
unit if it has at most one non-False literal

Optimize unit propagation: only visit those clauses

Each clause "watches” two literals and maintains
watching invariant: the watched literals are not False,
unless the clause is satisfied

If a watched literal becomes False, watch another
If can't maintain invariant, clause is unit (can propagate)

2 Watched Literals (2WL)

Still use watchlists (list of all clauses watching each lit)

Best part: since backtracking only unassigns variables,
it can never break the 2\WL invariant

Don't need to update watchlists

Unit!
Set1=T Set2=F t

(Tv2v3d) — (1v2v3) — (1v@v3)

Iterative DPLL

A decision refers to any time our algorithm arbitrarily
assigns a variable (without being forced to do so)
Selecting a literal and assigning it True is a decision

Unit propagation & reassigning selected literal after backtracking
are not decisions

All assignments implied by the /" decision are said to
be on the /" decision level

Can assignments ever be on the zeroth decision level?

Iterative DPLL

Maintain an assignment stack with the assignments from
each decision level

Whenever we make a new decision, copy the current
assignment onto the top of the stack

To backtrack: pop the current assignment off the stack,
restoring the previous one

Keep a propagation queue of literals that are set to False

Take literals from the queue and check if their
watching clauses are empty/unit

Assignment Stack

T T F T T

[Set 2 =T. Propagate 3 =F.

U Set1=T
1| 2[3[4]5

Assignment Stack

pop,ﬁ T T F T T Backtrack

s Set 2 =T. Propagate 3 =F.

U Set1=T
1]2]3]4]5

Iterative DPLL (Pseudocode)

dpll (@) :
if unit propagate() = CONFLICT: return UNSAT

while not all wvariables have been set:
let x = pick variable()
create new decision level
set x =T

while unit propagate() = CONFLICT:
if decision level = 0: return UNSAT
backtrack ()

set x = F
return SAT

Iterative DPLL (Pseudocode)

dpll (@) :

if unit propagate() = CONFLICT: return UNSAT

while not all variables have been set:

let x = pick variable() —————

create new decision level

How to implement this?

set x =T
while unit propagate() = CONFLICT:

if decision_level = 0: return UNSAT

backtrack ()
set x = F
return SAT

How should we branch?

Order of assigning variables greatly affects runtime

Want to find a satisfying assignment quicker and
find conflicts (rule out bad assignments) quicker

Ex: {1234,123,1235,235, 345, ...,67,67,67,67}

If we assign 6 first, then we can find conflicts right away

Decision Heuristics

Static heuristics: variable ordering fixed at the start

Dynamic heuristics: variable ordering is updated as
the solver runs

More effective, but also more expensive
Basic examples of decision heuristics:

Random ordering

Most-frequent static ordering

Most-frequent dynamic ordering

References

A. Biere, Handbook of satisfiability. Amsterdam: 10S Press, 2009.

N. Eéen and N. Sorensson, "An Extensible SAT-solver," Theory and
Applications of Satisfiability Testing Lecture Notes in Computer Science, pp.
502-518, 2004.

