
Lecture 3:
Algorithms for SAT
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 189

mailto:jediahkrohanmenezes@alumni.upenn.edu

Naive Search for SAT
● Naive algorithm: try every possible assignment until we

find a satisfying assignment or exhaust the search space
● Can interpret this as a DFS:

(search tree)

2

Trimming the Search Space
● When we set 𝒙 = 𝑻, what happens to the clauses

containing 𝒙?
● Observation 1: Any clause containing the positive

literal 𝑥 becomes satisfied, so we no longer need to
consider those clauses
○ In logic: 𝑇 ∨ 1 ∨ 2 ∨ ⋯ = 𝑇
○ Significance: we should remove all clauses

containing x

3

Trimming the Search Space
● When we set 𝒙 = 𝑻, what happens to the clauses

containing 𝒙?
● Observation 2: Any clause containing the negative

literal 𝑥 needs to be satisfied by a different literal, so
we can ignore 𝑥 in that clause
○ In logic: 𝐹 ∨ 1 ∨ 2 ∨ ⋯ = 1 ∨ 2 ∨ ⋯
○ Significance: we should remove 𝑥 from all

clauses containing it

4

The Splitting Rule
● The previous observations are called the splitting rule
● After repeatedly applying the splitting rule to formula φ:

○ If there are no clauses left, then all clauses have
been satisfied, so φ is satisfied
■ 𝜑 = ∅ denotes that there are no clauses left

○ If φ ever contains an empty clause, then all literals
in that clause are False, so we made a mistake
■ 𝜖 denotes the empty clause
■ 𝜖 ∈ 𝜑 denotes that 𝜑 contains an empty clause

5

The Splitting Rule
● The splitting rule allows us to create a smarter recursive

backtracking algorithm
● Backtracking: repeatedly make a guess to explore partial

solutions, and if we hit “dead end” (contradiction) then
undo the last guess

6

Backtracking Notation
● For a CNF 𝜑 and a literal 𝑥, define 𝜑|𝑥 (“𝜑 given 𝑥”) to be

a new CNF produced by:
○ Removing all clauses containing 𝑥
○ Removing 𝑥 from all clauses containing it

● Conditioning is “commutative”: 𝜑 𝑥! 𝑥" = 𝜑 𝑥" 𝑥!

7

Backtracking (Pseudocode)
check if 𝜑 is satisfiable

backtrack(𝜑):
if 𝜑 = ∅: return True
if 𝜖 ∈ 𝜑: return False
let 𝑥 = pick_variable(𝜑)
return backtrack(𝜑|𝑥) OR backtrack(𝜑|𝒙)

8

Example: Backtracking
𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

9

Steps

1 2 3 4 5

Example: Backtracking

10

Steps

1 2 3 4 5

T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1
T

Example: Backtracking

11

Steps
Conflict!

1 2 3 4 5

T T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

T

Example: Backtracking

12

Steps

1 2 3 4 5

T F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

FT

Example: Backtracking

13

Steps

Conflict!

1 2 3 4 5

T F T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3
FT

T

Example: Backtracking

14

Steps

1 2 3 4 5

T F F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3
F

F

T

T

Example: Backtracking

15

Steps

1 2 3 4 5

T F F T

1

2
T

3

4

F

F

T

T

T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

Example: Backtracking

16

Steps

Conflict!

1 2 3 4 5

T F F T T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

5

F

F

T

T

T

T

Example: Backtracking

17

Steps

1 2 3 4 5

T F F T F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

5

F

F

T

T

T

T F

Efficient Splitting
● How do we compute 𝜑|𝑥?
● Goals:

○ Support fast searching for empty clauses
○ Support fast backtracking
○ Fast to actually compute 𝜑|𝑥

18

Naïve Idea 1
● Transform 𝜑 into 𝜑|𝑥 by deleting satisfied clauses

and False literals from 𝜑
○ Deletion not too expensive if we use linked lists

○ Can quickly recognize an empty clause (linked list
will be empty), but need to check all clauses

○ Big issue: how do we backtrack?

19

Naïve Idea 2
● Simple fix: instead of modifying 𝜑 directly, create a

copy first and modify that
○ Easy backtracking – just restore the old formula

○ Big issue: too expensive (time and memory) to
copy formula every time we split

■ What if we have hundreds of thousands,
even millions of clauses?

20

Towards a smarter scheme
● Don’t modify or copy the formula

● Observation: if we set 𝑥 = 𝑇, the only clauses that become
empty must contain 𝑥
○ Store a dictionary mapping each literal to a list of all clauses

that contain it

○ But we can do even better!`

21

1 Watched Literal Scheme
● Observation: a clause can only become empty if it has

just one unassigned literal remaining
○ Ideally, only need to check these clauses

● Each clause “watches” one literal and maintains watching
invariant: the watched literal is True or unassigned
○ If the watched literal becomes False, watch another
○ If there are no more True/unassigned literals to

watch, then the clause must be empty

22

1 Watched Literal Scheme
● Watchlists data structure: maps each literal to a list of

clauses currently watching it
● When setting 𝑥 = 𝑇, only need to check watchlist of 𝑥

○ Suppose we successfully maintain the watching invariant.
What can we say about the watchlist of 𝑥?

23

Example: 1 Watched Literal

24

Steps

1 2 3 4 5

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

Example: 1 Watched Literal

25

Steps

1 2 3 4 5

T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1
T

Example: 1 Watched Literal

26

Steps

1 2 3 4 5

T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1
T

Example: 1 Watched Literal

27

Steps

1 2 3 4 5

T T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

T

Example: 1 Watched Literal

28

Steps

1 2 3 4 5

T T

Conflict!𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

T

Example: 1 Watched Literal

29

Steps

1 2 3 4 5

T F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

FT

Example: 1 Watched Literal

30

Steps

1 2 3 4 5

T F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

FT

Example: 1 Watched Literal

31

Steps

1 2 3 4 5

T F T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3
FT

T

Example: 1 Watched Literal

32

Steps

1 2 3 4 5

T F T

Conflict!

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3
FT

T

Example: 1 Watched Literal

33

Steps

1 2 3 4 5

T F F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3
F

F

T

T

Example: 1 Watched Literal

34

Steps

1 2 3 4 5

T F F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3
F

F

T

T

Example: 1 Watched Literal

35

Steps

1 2 3 4 5

T F F T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

F

F

T

T

T

Example: 1 Watched Literal

36

Steps

1 2 3 4 5

T F F T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

F

F

T

T

T

Example: 1 Watched Literal

37

Steps

1 2 3 4 5

T F F T T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

5

F

F

T

T

T

T

Example: 1 Watched Literal

38

Steps

1 2 3 4 5

T F F T T

Conflict!

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

5

F

F

T

T

T

T

Example: 1 Watched Literal

39

Steps

1 2 3 4 5

T F F T F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟑 ∨ 𝟒 ∨ 𝟓

𝟑 ∨ 𝟒 ∨ 𝟓

1

2
T

3

4

5

F

F

T

T

T

T F

Unit Propagation (UP)
● A unit clause is a clause containing only one literal
● Unit propagation rule: for any unit clause {ℓ}, we

must set ℓ = 𝑇
● Applying unit propagation can massively speed up

the backtracking algorithm in practice
○ Combining with the splitting rule can lead to a

“domino effect” of cascading unit propagation

40

The DPLL Algorithm
● Davis-Putnam-Logemann-Loveland (1962)
● Improved upon naive backtracking (search) with unit

propagation (inference)
● Still the basic algorithm behind most state-of-the-art

SAT solvers today!

41

DPLL (Pseudocode)
dpll(𝜑):

if 𝜑 = ∅: return TRUE
if 𝜖 ∈ 𝜑: return FALSE
if 𝜑 contains unit clause {ℓ}:

return dpll(𝜑|ℓ)
let 𝑥 = pick_variable(𝜑)
return dpll(𝜑|𝑥) OR dpll(𝜑|𝒙)

42

Example: DPLL

43

Steps

1 2 3 4

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟏 ∨ 𝟐 ∨ 𝟒

Example: DPLL

44

StepsUnit!

1 2 3 4

T

1
T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟏 ∨ 𝟐 ∨ 𝟒

Example: DPLL

45

Steps

1 2 3 4

T F

1

2
T

F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟏 ∨ 𝟐 ∨ 𝟒

Conflict!

Example: DPLL

46

Steps

1 2 3 4

F

1

2
T

F

F

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟏 ∨ 𝟐 ∨ 𝟒

Example: DPLL

47

Steps

1 2 3 4

F T

1

2
T

F

F

2
Unit!

T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟏 ∨ 𝟐 ∨ 𝟒

Example: DPLL

48

Steps

1 2 3 4

F T T

1

2
T

F

F

2

3
T

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐

𝟏 ∨ 𝟐 ∨ 𝟑

𝟏 ∨ 𝟐 ∨ 𝟒 T

Engineering Matters
● Since the main DPLL subroutine might run

exponentially many times, every speedup counts
● DPLL spends by far the most time on UP

○ How can we speed this up?
● Although DPLL has a natural recursive formulation,

recursion is slow — lots of overhead
○ We can make DPLL iterative using a stack

49

2 Watched Literals (2WL)
● Key observation: a clause can only be unsatisfied or

unit if it has at most one non-False literal
○ Optimize unit propagation: only visit those clauses

● Each clause “watches” two literals and maintains
watching invariant: the watched literals are not False,
unless the clause is satisfied
○ If a watched literal becomes False, watch another

● If can’t maintain invariant, clause is unit (can propagate)

50

2 Watched Literals (2WL)
● Still use watchlists (list of all clauses watching each lit)
● Best part: since backtracking only unassigns variables,

it can never break the 2WL invariant
○ Don’t need to update watchlists

51

𝟏 ∨ 𝟐 ∨ 𝟑
Set 1 = 𝑇 Set 2 = 𝐹

Unit!

𝟏 ∨ 𝟐 ∨ 𝟑 𝟏 ∨ 𝟐 ∨ 𝟑

Iterative DPLL
● A decision refers to any time our algorithm arbitrarily

assigns a variable (without being forced to do so)
○ Selecting a literal and assigning it True is a decision
○ Unit propagation & reassigning selected literal after backtracking

are not decisions

● All assignments implied by the ith decision are said to
be on the ith decision level
○ Can assignments ever be on the zeroth decision level?

52

Iterative DPLL
● Maintain an assignment stack with the assignments from

each decision level
○ Whenever we make a new decision, copy the current

assignment onto the top of the stack
● To backtrack: pop the current assignment off the stack,

restoring the previous one
● Keep a propagation queue of literals that are set to False

○ Take literals from the queue and check if their
watching clauses are empty/unit

53

Assignment Stack

54

T T F T T

T T F

T

1 2 3 4 5
Set 1 = 𝑇
Set 2 = 𝑇. Propagate 3 = 𝐹.

Assignment Stack

55

T T F

T

1 2 3 4 5
Set 1 = 𝑇
Set 2 = 𝑇. Propagate 3 = 𝐹.

T T F T T Backtrack!Pop!

Iterative DPLL (Pseudocode)
dpll(𝜑):

if unit_propagate() = CONFLICT: return UNSAT
while not all variables have been set:

let 𝒙 = pick_variable()
create new decision level
set 𝒙 = T
while unit_propagate() = CONFLICT:

if decision_level = 0: return UNSAT
backtrack()
set x = F

return SAT

56

Iterative DPLL (Pseudocode)
dpll(𝜑):

if unit_propagate() = CONFLICT: return UNSAT
while not all variables have been set:

let 𝒙 = pick_variable()
create new decision level
set 𝒙 = T
while unit_propagate() = CONFLICT:

if decision_level = 0: return UNSAT
backtrack()
set x = F

return SAT

57

How to implement this?

How should we branch?
● Order of assigning variables greatly affects runtime
● Want to find a satisfying assignment quicker and

find conflicts (rule out bad assignments) quicker

● Ex: 1234, 123, 1235, 235, 345, … , 67, 67,67, 67
○ If we assign 6 first, then we can find conflicts right away

58

Decision Heuristics
● Static heuristics: variable ordering fixed at the start
● Dynamic heuristics: variable ordering is updated as

the solver runs
○ More effective, but also more expensive

● Basic examples of decision heuristics:
○ Random ordering
○ Most-frequent static ordering
○ Most-frequent dynamic ordering

59

References
A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.
N. Eén and N. Sörensson, “An Extensible SAT-solver,” Theory and
Applications of Satisfiability Testing Lecture Notes in Computer Science, pp.
502–518, 2004.

60

