
Lecture 11:
TSP Techniques
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 189

mailto:jediahkrohanmenezes@seas.upenn.edu

The rest of the semester...
● Finished with our satisfiability + constraint

programming saga!
● 3 more lectures on “special topics” + final presentations
● Don’t forget: project check-in due 4/18 at 4pm

○ You should be at least 2/3 done with project!

2

Traveling Salesman Problem
● Problem: in weighted complete

graph, find a tour of minimum total
cost that visits every vertex exactly
once and returns to starting vertex
○ Graph can be directed or undirected

● Applications in routing, logistics,
producing microchips

● NP-complete!

3

Preliminary Notation
● We’ll look at complete directed graphs (parallel

edges, but no self-loops) with 𝑛 nodes, 𝑚 edges
○ Undirected graphs are often a special case

● Directed edge 𝑖, 𝑗 = 𝑖 → 𝑗 has weight 𝑤(𝑖, 𝑗)
● We’ll denote a tour as a permutation 𝑣!, 𝑣"… , 𝑣# of the

vertices, which represents 𝑣! → 𝑣" → ⋯ → 𝑣# → 𝑣!

4

Example

5

● For simplicity, examples will
generally be drawn undirected

● Imagine each edge (𝑖, 𝑗) is really
two parallel edges with same cost

● Optimal tour cost:
10 + 25 + 30 + 15 = 80

4

2 3

1

35

20 15

25 30

10

Attempt: Solving TSP with CP?
● Define 0/1 variables 𝑥$% indicating if edge (𝑖, 𝑗) is in

the TSP tour
● Each vertex is visited exactly once:

/
%&$

𝑥$% = /
%&$

𝑥%$ = 1, ∀1 ≤ 𝑖 ≤ 𝑛

● Want to minimize total cost:

𝐶 = /
($,%)

𝑤 𝑖, 𝑗 ⋅ 𝑥$%

6

An issue
● This CP formulation allows “subtours” rather than

forcing one contiguous tour!

7

Disallowing subtours
● For each possible subtour of vertices 𝑆, make sure

that we take less than |𝑆| edges between them
● As a constraint:

/
$&%∈+

𝑥$% < 𝑆 , ∀𝑆 ⊂ 𝑉, 𝑆 > 1

● Problem: there are exponentially many subtours!
○ Ways to fix this or add constraints lazily...
○ But in general CP is not state-of-the-art for TSP

8

Traveling Salesman Problem
● Observation: TSP is an approximation-friendly problem

○ In practice, “good enough” usually is good enough!

● Goal: design efficient heuristics that give an
empirically cheap tour (possibly not quite cheapest)

● Today: constructive heuristics
○ Start from nothing and iteratively build up partial solution

9

Nearest-Neighbor (NN)
● Start at any vertex 𝑢. Pick nearest unseen out-neighbor 𝑣

of 𝑢 and add it to end of tour, then repeat starting from 𝑣.
Continue until all vertices added.

● Pros:
○ Simple, intuitive, and relatively efficient
○ Empirically OK, esp. on Euclidean TSP

● Cons:
○ Greedy: can easily miss shortcut paths

10

Nearest-Neighbor (NN)

11

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

Nearest-Neighbor (NN)

12

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4

● Current cost:

20 + 20 = 40

Nearest-Neighbor (NN)

13

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4, 2

● Current cost:

20 + 10 + 25 = 55

Nearest-Neighbor (NN)

14

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4, 2, 3

● Current cost:

20 + 10 + 35 + 30 = 95

Nearest-Insertion (NI)
● Start the tour 𝑇 at any vertex
● Pick the nearest unseen out-neighbor 𝑣 of any vertex in

the tour
● Insert it into the tour 𝑇 = 𝑡!, … , 𝑡" so that the total tour

distance is minimized
○ i.e., find 𝑖 s.t. 𝑤(𝑡!, 𝑣) + 𝑤(𝑣, 𝑡!"#) − 𝑤(𝑡!, 𝑡!"#) is minimized

● Repeat until all vertices added to tour

● Intuition: still greedy, but not as greedy as NN – allow the
partial tour to be modified

15

Nearest-Insertion (NI)

16

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

Nearest-Insertion (NI)

17

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

● Next vertex: 4
○ Only one place to insert (up to rotation)

Nearest-Insertion (NI)

18

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4

● Current cost:

20 + 20 = 40

Nearest-Insertion (NI)

19

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 4

● Current cost:

20 + 20 = 40

● Next vertex: 2
After 1: w(1, 2) + w(2, 4) – w(1,4) = 25 + 10 – 20 = 15
After 4: w(4, 2) + w(2, 1) – w(1,4) = 10 + 25 – 20 = 15

Nearest-Insertion (NI)

20

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4

● Current cost:

25 + 10 + 20 = 55

Nearest-Insertion (NI)

21

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4

● Current cost:

25 + 10 + 20 = 55

● Next vertex: 3
After 1: w(1, 3) + w(3, 2) – w(1, 2) = 30 + 35 – 25 = 40
After 2: w(2, 3) + w(3, 4) – w(2, 4) = 35 + 15 – 10 = 40
After 4: w(4, 3) + w(3, 1) – w(4, 1) = 15 + 30 – 20 = 35

Nearest-Insertion (NI)

22

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4, 3

● Current cost:

25 + 10 + 15 + 30 = 80

Farthest-Insertion (FI)
● Start the tour 𝑇 at any vertex
● Pick the nearest farthest unseen out-neighbor 𝑣 of any

vertex in the tour
● Insert it into the tour 𝑇 = 𝑡!, … , 𝑡" so that the total tour

distance is minimized
○ i.e., find 𝑖 s.t. 𝑤(𝑡!, 𝑣) + 𝑤(𝑣, 𝑡!"#) − 𝑤(𝑡!, 𝑡!"#) is minimized

● Repeat until all vertices added to tour

● Intuition: start with the general outline of the tour and
then fill in the details later

23

Farthest-Insertion (FI)

24

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

Farthest-Insertion (FI)

25

4

2 3

1

35

20 15

25 30

10

● Current tour:

1

● Current cost:

0

● Next vertex: 3
○ Only one place to insert (up to rotation)

Farthest-Insertion (FI)

26

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 3

● Current cost:

30 + 30 = 60

Farthest-Insertion (FI)

27

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 3

● Current cost:

30 + 30 = 60

● Next vertex: 2
After 1: w(1, 2) + w(2, 3) – w(1, 3) = 25 + 35 – 30 = 30
After 3: w(3, 2) + w(2, 1) – w(1, 3) = 35 + 25 – 30 = 30

Farthest-Insertion (FI)

28

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 3

● Current cost:

25 + 35 + 30 = 90

Farthest-Insertion (FI)

29

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 3

● Current cost:

25 + 35 + 30 = 90

● Next vertex: 4
After 1: w(1, 4) + w(4, 2) – w(1, 2) = 20 + 10 – 25 = 5
After 2: w(2, 4) + w(4, 2) – w(2, 3) = 10 + 15 – 35 = -10
After 3: w(3, 4) + w(4, 1) – w(3, 1) = 15 + 20 – 30 = 5

Farthest-Insertion (FI)

30

4

2 3

1

35

20 15

25 30

10

● Current tour:

1, 2, 4, 3

● Current cost:

25 + 10 + 15 + 30 = 80

Insertion Heuristics
● Aims to be less naively greedy than NN

○ Unlike NN, can modify partial tour
● Somewhat more expensive than NN heuristic
● FI works pretty well in practice...
● ...but NI not so much.

31

Savings Heuristic
● Pick any vertex 𝑥 to be the “central vertex”
● Start with 𝑛 − 1 subtours: 𝑥 → 𝑣 → 𝑥 for all 𝑣 ∈ 𝑉 − 𝑥
● For each edge 𝑖, 𝑗 , where 𝑖, 𝑗 ∈ 𝑉 − 𝑥, compute its savings 𝑠(𝑖, 𝑗)

○ 𝑠(𝑖, 𝑗) = 𝑤(𝑖, 𝑥) + 𝑤(𝑥, 𝑗) − 𝑤(𝑖, 𝑗)
● Sort edges in decreasing order of savings
● Repeat until only one tour remains:
● Let (𝑖, 𝑗) be the next edge in sorted order
● If edges (𝑖, 𝑥) and (𝑥, 𝑗) are in our subtours, and 𝑖, 𝑗 are not already

in the same tour: replace (𝑖, 𝑥) and (𝑥, 𝑗) by (𝑖, 𝑗)

32

Savings Heuristic

33

35

20 15

25 30

10

1

● Current cost:
25 + 25 + 30 + 30 + 20 + 20 = 150

4

2 3

Savings Heuristic

34

● Current cost:
25 + 25 + 30 + 30 + 20 + 20 = 150

(𝒊, 𝒋) Savings 𝒔(𝒊, 𝒋)

(2, 3) 𝑤 2, 1 + 𝑤 1, 3 − 𝑤 2, 3
= 25 + 30 − 35 = 20

(3, 2) 𝑤 3, 1 + 𝑤 1, 2 − 𝑤(3, 2)
= 30 + 25 − 35 = 20

(2, 4) 𝑤 2, 1 + 𝑤 1, 4 − 𝑤(2, 4)
= 25 + 20 − 10 = 35

(4, 2) 𝑤 4, 1 + 𝑤 1, 2 − 𝑤(4, 2)
= 20 + 25 − 10 = 35

(3, 4) 𝑤 3, 1 + 𝑤 1, 4 − 𝑤(3, 4)
= 30 + 20 − 15 = 35

(4, 3) 𝑤 4, 1 + 𝑤 1, 3 − 𝑤(4, 3)
= 20 + 30 − 15 = 35

35

20 15

25 30

10

1

4

2 3

Savings Heuristic

35

● Current cost:
25 + 25 + 30 + 30 + 20 + 20 = 150

(𝒊, 𝒋) Savings 𝒔(𝒊, 𝒋)

(2, 3) 𝑤 2, 1 + 𝑤 1, 3 − 𝑤 2, 3
= 25 + 30 − 35 = 20

(3, 2) 𝑤 3, 1 + 𝑤 1, 2 − 𝑤(3, 2)
= 30 + 25 − 35 = 20

(2, 4) 𝑤 2, 1 + 𝑤 1, 4 − 𝑤(2, 4)
= 25 + 20 − 10 = 35

(4, 2) 𝑤 4, 1 + 𝑤 1, 2 − 𝑤(4, 2)
= 20 + 25 − 10 = 35

(3, 4) 𝑤 3, 1 + 𝑤 1, 4 − 𝑤(3, 4)
= 30 + 20 − 15 = 35

(4, 3) 𝑤 4, 1 + 𝑤 1, 3 − 𝑤(4, 3)
= 20 + 30 − 15 = 35

35

20 15

25 30

10

1

4

2 3

Savings Heuristic

36

● Current cost:
25 + 25 + 20 + 15 + 30 = 115

(𝒊, 𝒋) Savings 𝒔(𝒊, 𝒋)

(2, 3) 𝑤 2, 1 + 𝑤 1, 3 − 𝑤 2, 3
= 25 + 30 − 35 = 20

(3, 2) 𝑤 3, 1 + 𝑤 1, 2 − 𝑤(3, 2)
= 30 + 25 − 35 = 20

(2, 4) 𝑤 2, 1 + 𝑤 1, 4 − 𝑤(2, 4)
= 25 + 20 − 10 = 35

(4, 2) 𝑤 4, 1 + 𝑤 1, 2 − 𝑤(4, 2)
= 20 + 25 − 10 = 35

(3, 4) 𝑤 3, 1 + 𝑤 1, 4 − 𝑤(3, 4)
= 30 + 20 − 15 = 35

(4, 3) 𝑤 4, 1 + 𝑤 1, 3 − 𝑤(4, 3)
= 20 + 30 − 15 = 35

35

20 15

25 30

10

1

4

2 3

Savings Heuristic

37

(𝒊, 𝒋) Savings 𝒔(𝒊, 𝒋)

(2, 3) 𝑤 2, 1 + 𝑤 1, 3 − 𝑤 2, 3
= 25 + 30 − 35 = 20

(3, 2) 𝑤 3, 1 + 𝑤 1, 2 − 𝑤(3, 2)
= 30 + 25 − 35 = 20

(2, 4) 𝑤 2, 1 + 𝑤 1, 4 − 𝑤(2, 4)
= 25 + 20 − 10 = 35

(4, 2) 𝑤 4, 1 + 𝑤 1, 2 − 𝑤(4, 2)
= 20 + 25 − 10 = 35

(3, 4) 𝑤 3, 1 + 𝑤 1, 4 − 𝑤(3, 4)
= 30 + 20 − 15 = 35

(4, 3) 𝑤 4, 1 + 𝑤 1, 3 − 𝑤(4, 3)
= 20 + 30 − 15 = 35

35

20 15

25 30

10

1

4

2 3

● Current cost:
25 + 25 + 20 + 15 + 30 = 115

Savings Heuristic

38

(𝒊, 𝒋) Savings 𝒔(𝒊, 𝒋)

(2, 3) 𝑤 2, 1 + 𝑤 1, 3 − 𝑤 2, 3
= 25 + 30 − 35 = 20

(3, 2) 𝑤 3, 1 + 𝑤 1, 2 − 𝑤(3, 2)
= 30 + 25 − 35 = 20

(2, 4) 𝑤 2, 1 + 𝑤 1, 4 − 𝑤(2, 4)
= 25 + 20 − 10 = 35

(4, 2) 𝑤 4, 1 + 𝑤 1, 2 − 𝑤(4, 2)
= 20 + 25 − 10 = 35

(3, 4) 𝑤 3, 1 + 𝑤 1, 4 − 𝑤(3, 4)
= 30 + 20 − 15 = 35

(4, 3) 𝑤 4, 1 + 𝑤 1, 3 − 𝑤(4, 3)
= 20 + 30 − 15 = 35

35

20 15

25 30

10

1

4

2 3

● Current cost:
25 + 25 + 20 + 15 + 30 = 115

Savings Heuristic

39

● Current cost:
25 + 10 + 15 + 30 = 80

(𝒊, 𝒋) Savings 𝒔(𝒊, 𝒋)

(2, 3) 𝑤 2, 1 + 𝑤 1, 3 − 𝑤 2, 3
= 25 + 30 − 35 = 20

(3, 2) 𝑤 3, 1 + 𝑤 1, 2 − 𝑤(3, 2)
= 30 + 25 − 35 = 20

(2, 4) 𝑤 2, 1 + 𝑤 1, 4 − 𝑤(2, 4)
= 25 + 20 − 10 = 35

(4, 2) 𝑤 4, 1 + 𝑤 1, 2 − 𝑤(4, 2)
= 20 + 25 − 10 = 35

(3, 4) 𝑤 3, 1 + 𝑤 1, 4 − 𝑤(3, 4)
= 30 + 20 − 15 = 35

(4, 3) 𝑤 4, 1 + 𝑤 1, 3 − 𝑤(4, 3)
= 20 + 30 − 15 = 35

35

20 15

25 30

10

1

4

2 3

40

worse solution

worse runtime

Vehicle Routing Problem
● Actually, the Savings heuristic was created to solve a

generalization of the TSP:
● The Vehicle Routing Problem (VRP) also takes place in a

weighted, complete graph
● Instead of one salesman, we have a fleet of vehicles

which are all parked at a central vertex (the depot)
○ May or may not be a limit on the number of vehicles

● Goal: find routes starting and ending at the depot for each
vehicle with minimum total weight so that each vertex is
visited once by some vehicle

41

Constrained VRP
● In real life: why use a fleet of vehicles when you could

have one vehicle that travels all the routes?
● There may be additional constraints for vehicles, e.g.:

○ Maximum distance a vehicle can travel
○ Carrying capacity of a vehicle, where each node has

some volume to be delivered

42

Savings Heuristic for VRP
● Let 𝑥 denote the depot
● Start with 𝑛 − 1 subtours: 𝑥 → 𝑣 → 𝑥 for all 𝑣 ∈ 𝑉 − 𝑥
● For each edge 𝑖, 𝑗 , where 𝑖, 𝑗 ∈ 𝑉 − 𝑥, compute its savings 𝑠(𝑖, 𝑗)

○ 𝑠(𝑖, 𝑗) = 𝑤(𝑖, 𝑥) + 𝑤(𝑥, 𝑗) − 𝑤(𝑖, 𝑗)
● Sort edges in decreasing order of savings
● Repeat until only one tour remains or we reach negative savings:
● Let (𝑖, 𝑗) be the next edge in sorted order
● If edges (𝑖, 𝑥) and (𝑥, 𝑗) are in our subtours, and 𝑖, 𝑗 are not already

in the same tour: replace (𝑖, 𝑥) and (𝑥, 𝑗) by (𝑖, 𝑗)...
○ ...unless it would violate our constraints

43

Solving TSP with OR-Tools
● OR-Tools comes with a routing solver that can solve the TSP and

VRP with much more complex constraints!
○ Pickups and drop-offs, time windows, penalties...

● The guide is pretty good:
https://developers.google.com/optimization/routing

● Comes with many heuristics including NN, Savings, etc...
○ By default, solver automatically chooses a heuristic to use based on

the problem at hand
● Note: the routing solver is optimized for getting a “good enough”

solution to constrained problems, not exact solving huge TSPs

44

https://developers.google.com/optimization/routing

Scaling and Shifting
● Warning: the OR-Tools routing solver may not work correctly

with fractional/negative edge weights
○ Even worse, it might not throw an error!

● Can fix negative weights by shifting:
○ Add large constant 𝐾 to all weights to make them positive
○ Preserves TSP structure since all tours increase by 𝐾 ⋅ 𝑛
○ May not necessarily preserve VRP structure ¯_(ツ)_/¯

● Can fix fractional weights by scaling:
○ Multiply all weights by a large constant 𝑀 to make them integers (or

minimize rounding error)
○ If no rounding, preserves TSP and VRP structure

45

The OR-Tools TSP Solver doesn’t
always produce an optimal solution.

How well does it do in practice?

Let’s test it on instances from the National TSP Collection, a set
of real-world instances ranging in size from 29 to 71,000+ nodes.

46

Benchmarking the TSP Solver

47

Country # Cities Output Cost Optimal Cost Percent Error *Runtime (s)

W. Sahara 29 27749 27603 0.53% 0.0320

Djibouti 38 7078 6656 6.3% 0.0657

Qatar 194 10064 9352 7.6% 2.61

Uruguay 734 83476 79114 5.5% 37.9

Zimbabwe 929 101100 95345 6.0% 91.4

Oman 1979 92250 86891 6.2% 668

*Running on my Dell XPS laptop with 16GB of RAM, in a Jupyter notebook.

