
CIS 1890: Solving
Hard Problems
in Practice

👋Welcome!

Teaching Staff

2

Rohan Menezes
Instructor

Charley Cunningham
Instructor

Sahitya Senapathy
Teaching Assistant

Eric Chen
Teaching Assistant

Goals for the course

● Encounter vital but provably
hard problems

● Discover how industry experts tackle problems in
practice

● Experiment with industrial tools using modern
techniques

● Apply these tools to your own hard problems

3

Goals for the course
● Encounter vital but provably hard problems

● Discover how industry experts
tackle problems in practice

● Experiment with industrial tools using modern
techniques

● Apply these tools to your own hard problems

4

Goals for the course
● Encounter vital but provably hard problems
● Discover how industry experts tackle problems in

practice

● Experiment with industrial tools
using modern techniques

● Apply these tools to your own hard problems

5

Goals for the course
● Encounter vital but provably hard problems
● Discover how industry experts tackle problems in

practice
● Experiment with industrial tools using modern

techniques

● Apply these tools to your own
hard problems

6

Course Logistics
● Homework: 4.5 programming assignments

○ HW0 (finger exercises) due next Tuesday before class
○ 1 late submission (48h), can’t be used on project

● Final Project: solve your own hard problem, in pairs, tons of
flexibility

● Exams: no
● Office Hours: schedule on cis.upenn.edu/~cis1890
● Detailed slides and code posted on website too
● Please make sure you're signed up for Ed and Gradescope

7

Theory? Practice?
● Interspersed theory & practice

○ “Practice”: applying techniques
○ “Theory”: how techniques work
○ No proofs

● First 4 weeks will have relatively
more theory

● Remaining 10 weeks will be
more practical

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Theory per week

Grading
● Homework: 60%
● Final Project: 30%
● Attendance: 10%

● Final grades:
don’t worry too much about it.

9

19x Logistics
● This “recitation” is the main lecture for CIS 1890

○ Tuesday 5:15 – 6:45 in Towne 319
● The “lecture” slot is for all 19x courses

○ Covers general SWE stuff: command line, git, etc
○ Only 3 lectures (the first 3 weeks)
○ Can go in person or watch recording on

cis.upenn.edu/~cis19x/

10

https://www.cis.upenn.edu/~cis19x/

Covid Logistics
● If you have a reasonable

suspicion that you have
Covid, don’t come
○ Email me before class and

we’ll work something out

11

Academic Integrity
● Work on assignments individually (except final project)

○ Discussion encouraged, but work should be yours
● OK: high-level discussions

○ “Can you help me understand the DPLL algorithm?”
● OK: low-level discussions

○ “How do I time my program in OR-Tools?”
● Be careful: mid-level discussions

○ Not OK: “How exactly do I write this constraint?”

12

Lecture 1:
Hard Problems
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 1890

mailto:jediahk@seas.upenn.edu

14

What makes a problem

hard?

CIS 262 in 5 minutes
● Decision problem: some question that can be

answered YES/NO for any input

● Optimization problem: try to find the “best” out of
many feasible solutions

15

CIS 262 in 5 minutes
● Easy problem: we can solve

it quickly for any input
○ Quickly: as input size grows, solving time

grows at most polynomially

● Difficult problem: can’t solve
it quickly for every input
○ Solving time might grow exponentially in

general

16

CIS 262 in 5 minutes
● NP-complete: tons of critical

decision problems that turn
out to be equivalent

17

CIS 262 in 5 minutes

18

CIS 262 in 5 minutes
● Probably difficult: nobody has able to figure out how

to solve these problems quickly in 50+ years

19

Our final definition of hard

20

21

We’ll look at NP-complete problems
(both decision and optimization
varieties) in this course.

● Decision problems often ask “does there exist some solution?”
● In practice, we don’t just want to determine if a solution exists;

want to find a solution as well.

Does exponential runtime
matter?
● Moore, 1965: number of transistors per

chip doubles every two years
● Why bother with solvers? Just wait for

faster computers
● Issue 1: if problems take O(2n) time, then

even if computer speed doubles, we
can only increase n by 1

● Issue 2: 55 years later, Moore’s law is
slowing down

22

How to solve it, then?

A hopeless challenge?

No! Worst case is pessimistic –
remember QuickSort

23

Dealing with hardness
Things we won’t focus on:
● Special case algorithms

○ Special cases of NP-complete problems might be in P

● Approximation algorithms
○ For optimization problems, find an “almost optimal” solution

● Monte Carlo algorithms
○ Randomized algorithms with small chance of incorrectness

● Las Vegas algorithms
○ Randomized algorithms with small chance of running slowly

24

25

Heuristic
Algorithms

26

Declarative
Programming
(Modeling)

27

Search &
Inference

The Universal Solver
● 1956-74: early efforts towards general automated reasoning

○ 1956: Samuel’s checkers program demonstrated on TV
○ 1959: Simon, Shaw & Newell’s General Problem Solver
○ 1964: Bobrow’s natural-language word problem solver

● 1971: introduction of NP-completeness
○ General idea: can solve one problem extremely well, and

reduce all other problems to that problem

28

Classic hard problem: SAT
● Satisfiability Problem: Given a formula 𝜑 of boolean

variables, does there exist a truth assignment that makes
the entire formula evaluate to True?
○ Many problems can be encoded as SAT instances
○ Assignment: a choice of truth values for each variable

● Ex: 𝑥 ∨ 𝑦 ⇒ 𝑦 is satisfiable with {𝑥 = 𝑇; 𝑦 = 𝑇}
● Ex: 𝑥 ∧ 𝑥 is unsatisfiable
● Cook’s Theorem (1971): SAT is NP-complete.

○ First NP-complete problem!

29

Modern SAT solvers
● SAT solvers: black-boxes to quickly solve huge

instances of SAT
● 1962: Davis, Putnam, and Loveland formulate

precursor to most modern SAT solvers
● GRASP (UMich 1996) and Chaff (Princeton 2001):

first practical, efficient SAT solvers

30

Timeline of SAT solvers

31

● Today: can solve instances with millions of variables
○ 1m vars: search space of assignments is 21000000 ≈ 9.9 ⨉ 10301029

○ Age of universe ≈ 4.3 ⨉ 1026 nanoseconds
● This chart refers to typical SAT instances found in industry applications

1962

DPLL (~10 vars)

1986

BDDs (~100 vars)

1992

GSAT (~300 vars)

1996

GRASP (~1k vars)

2001

Chaff (~10k vars)

2005

MiniSat (~100k vars)

SAT terminology
● Assume only logical symbols are AND, OR, NOT
● Literal: a boolean variable (𝑥) or its negation (𝑥)

○ (𝑥) is called a positive literal, and (𝑥) is a negative literal
○ “a variable as it appears in a formula”

● Clause: a disjunction/OR of literals
○ e.g. 𝑥 ∨ 𝑦 ∨ 𝑧

● Note: we would say that 𝑥 ∨ 𝑦 ∧ (𝑥 ∨ 𝑦) has 2 variables
and 4 literals

32

Conjunctive Normal Form
● A boolean formula is in conjunctive normal form (CNF) if

it is a conjunction/AND of clauses (i.e., an AND of ORs)
○ “a CNF” means “a formula in CNF”

● Ex: which of the following are in CNF?
○ 𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ⇒ 𝑤
○ 𝑥 ∧ 𝑦 ∧ 𝑧 ∨ 𝑦 ∧ 𝑧
○ 𝑥 ∨ 𝑦 ∨ 𝑧 ∧ (𝑦 ∨ 𝑧)
○ 𝑥 ∨ 𝑦 ∨ 𝑧
○ 𝑥 ∧ 𝑥

33

CNF-SAT: a loss of generality?
● It’s convenient for SAT solvers to accept formulas in CNF, but what

if we need to solve any other non-CNF boolean formula?
● Every boolean formula φ can be expressed in CNF

○ Rewrite in terms of ∧,∨, ¬
○ Apply distributive & DeMorgan’s laws until formula is in CNF

34

CNF-SAT: a loss of generality?
● Issue: How large is the resulting CNF formula?
● Ex: 𝑥! ∧ 𝑥" ∨ 𝑥# ∧ 𝑥$

𝑥! ∧ 𝑥" ∨ 𝑥# ∧ 𝑥! ∧ 𝑥" ∨ 𝑥$
𝑥! ∨ 𝑥# ∧ 𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥$ ∧ 𝑥" ∨ 𝑥$

○ In general, the CNF of 𝑥! ∧ 𝑥" ∨ 𝑥# ∧ 𝑥$ ∨ ⋯∨ (𝑥"%&! ∧ 𝑥"%) has 2n clauses

● This exponential blowup will make solving arbitrary non-CNF
formulas very difficult... can we do better?

35

The Tseitin Transformation
● Two boolean formulas are equisatisfiable if they are either both

satisfiable or both unsatisfiable
○ No small equivalent CNF, but we only need to find a small equisatisfiable CNF

● For each subformula 𝜓 = 𝜓1 ∘ 𝜓2, introduce a new variable x𝜓
○ Here, “subformula” includes the formula φ itself, but excludes all literals

○ The operator ∘ represents a boolean connective; i.e., ∧ or ∨

● Conjoin (AND) together 𝑥% with (𝑥& ⇔ 𝑥&! ∘ 𝑥&") for each 𝜓
● Convert (𝑥& ⇔ 𝑥&! ∘ 𝑥&") into an equivalent CNF

○ Helpful fact: (𝑥 ⇒ 𝑦) is equivalent to 𝑥 ∨ 𝑦

36

The Tseitin Transformation
● Ex: Find an equisatisfiable CNF for 𝜑 = (1 ∧ 2) ∨ 3.

○ Make new variables: 4, corresponding to 1 ∧ 2 ; and 5,
corresponding to the entire formula φ

○ This is longer than the equivalent CNF, so is it better?
37

5 ∧ 4 ⟺ 1 ∧ 2 ∧ 5 ⟺ 4 ∨ 3
5 ∧ 4 ⇒ 1 ∧ 2 ∧ 4 ⇐ 1 ∧ 2 ∧ 5 ⇒ 4 ∨ 3 ∧ 5 ⇐ 4 ∨ 3

5 ∧ =4 ∨ (1 ∧ 2) ∧ 4 ∨ (1 ∧ 2) ∧ =5 ∨ 4 ∨ 3 ∧ 5 ∨ (4 ∨ 3)
5 ∧ =4 ∨ 1 ∧ 2 ∧ 4 ∨ =1 ∨ =2 ∧ =5 ∨ 4 ∨ 3 ∧ 5 ∨ (=4 ∧ =3)

5 ∧ =4 ∨ 1 ∧ =4 ∨ 2 ∧ 4 ∨ =1 ∨ =2 ∧ =5 ∨ 4 ∨ 3 ∧ 5 ∨ =4 ∧ 5 ∨ =3

The Tseitin Transformation
● Can write output of Tseitin transformation with scary formula:
● Clearly the formula ρ output by Tseitin’s procedure is in CNF

● Key idea: If 𝜑 has 𝑛 literals, then 𝜌 has 𝑂(𝑛) literals.
○ 7 literals in each CNF(𝑥& ⇔ 𝑥&! ∘ 𝑥&")

○ 𝑛 − 1 subformulas in total

○ 7 ∗ 𝑛 − 1 = 𝑂(𝑛) literals
38

The Tseitin Transformation
● Key idea: φ and ρ are equisatisfiable

● If ρ has a satisfying assignment 𝛽:
○ Can use the same assignment to satisfy φ

○ Just ignore new vars

● Can run SAT solver on ρ and use the result as the answer for φ

39

A couple past final projects…

40

Constrained Style Sheets

41

c(p == min(h, w))
c(l * 10 == p)
c(2l == l * 2)

box-v(p)-neuv(inset) {
box-shadow:

v(inset) v(l)px v(l)px
v(2l)px #bebebe,
v(inset) -v(l)px -v(l)px
v(2l)px #ffffff;

}

Kaan Erdogmus & Shriyash Upadhyay

Optimal Asset Portfolios

42

Soham Dharmadhikary & Nikhil Kokra

Generative Melody Creator

43

Paul Lorenc & Leonardo Nerone

Let’s play a game

44

Search &
Inference

Solution

45

Next week: learn how to
use SAT solvers
ourselves!

46

Our language of choice...
Python!
● Pros:

○ Easy to learn and use
○ Concise
○ Don’t need to spend time worrying

about low-level details
● Cons:

○ Slow (in practice, C++ is used to
develop solver systems)

47

But I don’t know Python...
Don’t worry!
● HW0: Finger Exercises will bring you up

to speed
● Very easy syntax, low learning curve
● Don’t need to be a Python expert to

succeed in 189
● If you are comfortable with any OOP

language (e.g. Java) you’ll be fine

48

