. Welcome!
CIS 1890:

Teaching Staff

Rohan Menezes Charley Cunningham Sahitya Senapathy Eric Chen

Instructor Instructor Teaching Assistant Teaching Assistant

Goals for the course

Encounter vital but provably
hard problems

Goals for the course

Discover how industry experts
tackle problems in practice

Goals for the course

Experiment with industrial tools
using modern techniques

Goals for the course

Apply these tools to your own
hard problems

Course Logistics

Homework: 4.5 programming assignments
H\W/O (finger exercises) due next Tuesday before class
1 late submission (48h), can't be used on project

Final Project: solve your own hard problem, in pairs, tons of
flexibility

Exams: no

Office Hours: schedule on cis.upenn.edu/~cis1890
Detailed slides and code posted on website too

Please make sure you're signed up for Ed and Gradescope

Theory? Practice?

Interspersed theory & practice
"‘Practice”: applying techniques
"Theory" how techniques work
No proofs

First 4 weeks will have relatively
more theory

Remaining 10 weeks will be
more practical

1

Theory per week

2 3 4 5 6 7 8 9 1011 12 13 14

Grading

Homework: 60%
Final Project: 30%
Attendance; 10%

Final grades:
don't worry too much about it.

19X Logistics

This "recitation” is the main lecture for CIS 1890
Tuesday 515 - 6:45 in Towne 319

The “lecture” slot is for all 10x courses
Covers general SWE stuff: command line, git, etc
Only 3 lectures (the first 3 weeks)

Can go in person or watch recording on
cis.upenn.edu/~Cis1gx/

https://www.cis.upenn.edu/~cis19x/

Covid Logistics

If you have a reasonable
suspicion that you have
Covid, don't come

Email me before class and
we'll work something out

Academic Integrity

Work on assignments individually (except final project)
Discussion encouraged, but work should be yours

OK: high-level discussions
‘Can you help me understand the DPLL algorithm?”

OK: low-level discussions
‘How do | time my program in OR-Tools?"

Be careful: mid-level discussions
Not OK: "How exactly do | write this constraint?”

Lecture 1.
Hard Problems

mailto:jediahk@seas.upenn.edu

CIS 262 in 5 minutes

Decision problem: some question that can be
answered YES/NO for any input

36

/\

6 ~ 6=
/\ /\

- elxd Dx2es

-

Optimization problem: try to find the ‘best” out ‘of
many feasible solutions

CIS 262 in 5 minutes

Easy problem: we can solve
it quickly for anyinput

Quickly: as input size grows, solving time
grows at most polynomially

Difficult problem: can't solve
it quickly for every input

Solving time might grow exponentially in
general

CIS 262 in 5 minutes

NP-complete: tons of critical
decision problems that turn
out to be equivalent

protein folding

CIS 262 in 5 minutes
MY HOBBY:

EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

¢t CHOTCHKIES RESTAURANT

«— APPENZERS —~
MIXED FROIT 2.15
FRENCH FRIES 2.75
SIDE 5ALAD 3.35
HOT WINGS 355
MOZZARELLA STICXS 4.20
SAMPLER PLATE 5.80

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.

l . EXACTLY? UHA...

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIx OTHER
TABLES TO GET TO —

~AS FRST AS POSSIBLE, OF (OURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /

£N
(XIbR

L 8T

CIS 262 in 5 minutes

Probably difficult: nobody has able to figure out how
to solve these problems quickly in 50+ years

I‘| a; 6!
o

owe 0-7-2079

-

runs Charity Fropran $ 7,000,000,00

5 Ore Mitllon Dollars .
| oo Donalion Mr. Swith

Our final definition of

AL LL L L

I can’t find an efficient algorithm, but neither can all these famous people.”

We'll look at
(both decision and optimization
varieties) in this course.

e Decision problems often ask "does there exist some solution?”
e In practice, we don't just want to determine if a solution exists;
want to find a solution as well.

Does exponential runtime
matter?

Microprocessors

107

Moore, 1965: number of transistors per !ijt{gf‘?
chip doubles every two years il
\Why bother with solvers? Just wait for

faster computers

Issue 1: if problems take O(2") time, then *—

even if computer speed doubles, we R :
Can Only increase n by 1 105975 1980 198‘5 1990 1995 2000 2(;0-5 2010 2015

Issue 2: 55 years later, Moore's law is
slowing down

How to solve it, then?

No! Worst case Is pessimistic —
remember QuickSort

Dealing with hardness

Things we won't focus on:
Special case algorithms
Special cases of NP-complete problems might be in P
Approximation algorithms
For optimization problems, find an "almost optimal” solution
Monte Carlo algorithms

Randomized algorithms with small chance of incorrectness
Las Vegas algorithms

Randomized algorithms with small chance of running slowly

..

Heuristic
Algorithms

RULE OF THUNB -|

orders.customer name

orders

orders.order_id > |

orders.type == "shipped"

orders.order id;

Search &
Inference

...

The Universal Solver

1050-74. early efforts towards general automated reasoning
1956: Samuel's checkers program demonstrated on TV
1959: Simon, Shaw & Newell's General Problem Solver
1964: Bobrow's natural-language word problem solver

1971 introduction of NP-completeness

General idea: can solve one problem extremely well, and
reduce all other problems to that problem

Classic hard problem:

Satisfiability Problem: Given a formula ¢ of boolean

variables, does there exist a truth assignment that makes
the entire formula evaluate to True?

Many problems can be encoded as SAT instances
Assignment: a choice of truth values for each variable
Ex: (x Vy) = yis satisfiable with {x =T; y = T}
Ex: (x A x) is unsatisfiable
Cook’s Theorem (1971): SAT is NP-complete.
First NP-complete problem!

Modern SAT solvers

e SAT solvers: black-boxes to quickly solve huge
instances of SAT

e 1062 Davis, Putnam, and Loveland formulate
precursor to most modern SAT solvers

e GRASP (UMich 1996) and Chaff (Princeton 2001):
first practical, efficient SAT solvers

e The improvement in the performance of SAT solvers over the past 20
years is revolutionary!

— Better marketing: Deep Solving

Timeline of SAT solvers

DPLL (~10 vars) GSAT (~300 vars) Chaff (~10k vars)

1986 1996 2005

1962 1992 2001

BDDs (~100 vars) GRASP (~1k vars) MiniSat (~100k vars)

Today: can solve instances with millions of variables
1M vars: search space of assignments is 21000000 = g g x 10301029
Age of universe = 4.3 x 102° nanoseconds

This chart refers to typical SAT instances found in industry applications

SAT terminology

Assume only logical symbols are AND, OR, NOT

Literal: a boolean variable (x) or its negation (x)
(x) is called a positive literal, and (x) is a negative literal

‘a variable as it appears in a formula
Clause: a disjunction/OR of literals
eg. (xvyvz)

Note: we would say that (x vV y) A (x V y) has 2 variables
and 4 literals

Conjunctive Normal Form

A boolean formula is in conjunctive normal form (CNF) if
it is a conjunction/AND of clauses (i.e., an AND of ORSs)
‘a CNF" means "a formula in CNF"

Ex: which of the following are in CNF?
xVyVvVz)A(x =>w)
xAyAz)V(yAz)
(xVyvz)A(yVz)

XVyVz
xXNX

CNF-SAT: a loss of generality?

It's convenient for SAT solvers to accept formulas in CNF, but what
If we need to solve any other non-CNF boolean formula?

Every boolean formula ¢ can be expressed in CNF
Rewrite in terms of AV, =
Apply distributive & DeMorgan's laws until formula is in CNF

CNF-SAT: a loss of generality?

Issue: How large is the resulting CNF formula?
EX: (x1 N xZ) \% (X3 N\ X4)
((x1 AXy)V x3) A ((x1 AXy)V x4)

((x1 Vx3)A(xy V x3)) A ((x1 Vxy)A(xy V X4))
In general, the CNF of (x; Axy) V (x5 Axy) V-V (Xon—1 A X2p) has 27 clauses

This exponential blowup will make solving arbitrary non-CNF
formulas very difficult.. can we do better?

The Tseitin Transformation

Two boolean formulas are equisatisfiable if they are either both
satisfiable or both unsatisfiable

No small equivalent CNF, but we only need to find a small equisatisfiable CNF
For each subformula ¥ = ¢ © ¥y, introduce a new variable x,,

Here, "subformula” includes the formula ¢ itself, but excludes all literals

The operator o represents a boolean connective; i.e., A or Vv

Conjoin (AND) together x, with (x, © xy, © xy,) for each ¢

Convert (xy, © xy,, © xy,) INto an equivalent CNF
Helpful fact: (x = y) is equivalentto (x Vy)

The Tseitin Transformation

Ex: Find an equisatisfiable CNF for ¢ = (1 A2) V 3.

Make new variables: 4, corresponding to (1 A 2); and 5,
corresponding to the entire formula ¢

S5A[4= (1A2)]A[5< (4V3)]
SAl(4=>AA))A(Ae@A))|Al(B=2¢@VI))A(5< (4Vv3))]
SAAVAA2DA(AV(AA2))A(BV4AVI)A(5V(4V3))
SA(AVAA2))AMAVIV2IA(BV4AVI)A(BV(AA3Z))
SAAVDAGAV2IAMAVIV2ZIA(BV4VI)AGBGVAAGV3I)

This is longer than the equivalent CNF, so is it better?

The Tseitin Transformation

Can write output of Tseitin transformation with scary formula:
Clearly the formula p output by Tseitin's procedure is in CNF

p=1T¢ A /\ CNF(zy <= x4, o zy,)

1092
subformula of ¢

Key idea: If ¢ has n literals, then p has 0(n) literals.
7 literals in each CNF(xy, © Xy, © xy,)

n — 1 subformulas in total

7 x(n—1) = 0(n) literals

The Tseitin Transformation

Key idea: ¢ and p are equisatisfiable

p=7=T¢ A /\ CNF(zy < x4, 0 zy,)

1092
subformula of ¢

If p has a satisfying assignment g
Can use the same assignment to satisfy ¢

Just ignore new vars

Can run SAT solver on p and use the result as the answer for ¢

Constrained Style Sheets

Kaan Erdogmus & Shriyash Upadhyay

c(p == min(h, w))

==p)
==|*)

box-v(p)-neuv(inset) {
box-shadow:

inset) v(l)px v(l)px
)px #bebebe,

inset) -v(l)px -v(l)px
JpX HTTTTT;

Vv
Vv
Vv

(
(
(
(

\'

Optimal Asset Portfolios

Soham Dharmadhikary & Nikhil Kokra
An Optimization Problem

Maximize:

M
maximize return, minimize AT — . Z ’
covariance and shorting (V 7_") w A”wV” o ko 1(w1 < 0)
1=

. Collecting and Evaluating Results

Subject To:
M N
Zw_ =1 Portfolio return (2010 - 2020): 2.3963905327367754
L Portfolio variance (2010 - 2020): 0.01115399257558882
i=1 Market return (2010 - 2020): 2.3295003556295586

Market variance (2010 —_2020): 0.010533059982624654
le7

35

Market value
~—Portfolio value
30
25
v »
=
s 20
15
10

Time

- Generative Melody Creator

Paul Lorenc & Leonardo Nerone

f
o)
o)

Let’s play a game

Search &
Inference

Solution

Next week: learn how to

)

2

use SAT solvers

Sinz

Fig. 52. The clauses of
these test cases bind
the variables together
in significantly different
ways. (Illustrations by
Carsten Sinz.)

ourselves!

Je,,(zﬁﬁrommumm%\

M e MO AAAMASAMARANAL

Fig. 4. Clause- and variable-dependency graph of HiTag2. Clause groups are represented
as hexagons, and variables as boxes. The known keystream bits are the 5 final filter
functions at the top, and the feedback functions are the 5 hexagons at the bottom right.

Our language of choice...

Python!
Pros:
Easy to learn and use
Concise

Don't need to spend time worrying
about low-level details

Ccons:

Slow (in practice, C++is used to
develop solver systems)

But | don’t know Python...

Don’t worry!

o HWO: Finger Exercises will bring you up
to speed

e Very easy syntax, low learning curve

e Don't need to be a Python expert to
succeed in 189

e If you are comfortable with any OOP
language (e.g. Java) you'll be fine

