Problem 1: Let T be a tree where the maximum degree is Δ. Prove that T has at least Δ leaves by contradiction.

Solution:
Assume that $\Delta \geq 2$, since the cases of $\Delta = 0$ and $\Delta = 1$ are clearly true. Suppose for the sake of contradiction that there are at most $\psi < \Delta$ leaves. Let $v \in V$ have degree Δ. Consider $S = \{u \in V \mid \{u, v\} \in E\}$. Note that S is the set of v’s neighbors, and $|S| = \Delta$.

For all $u_i \in S$, there exists at least one path that starts with $\{v, u_i\}$ that ends with a leaf. We pick any such leaf for each edge $\{v, u_i\}$ and call the leaf l_i. Note there is a unique l_i corresponding to each u_i, as trees are acyclic, so we have Δ l_i’s in total. Hence, by the Pigeonhole Principle, where the pigeons are the terminating leaves l_i of each path and the holes are the ψ leaves available, we know that $\left\lceil \frac{\Delta}{\psi} \right\rceil \geq \left\lceil \frac{\Delta}{\Delta - 1} \right\rceil = \left\lceil 1 + \frac{1}{\Delta - 1} \right\rceil$ (since $\Delta \geq 2$) = 2 paths share the same terminating leaf, say ℓ_ω.

This is a contradiction, since the path between ℓ_ω and v are unique in a tree.

For each $u_i \in S$, let p_i be a maximal path starting from $v - u_i$. Note that there must be Δ such paths. We know from the lemma proven above that all such p_i must terminate in a leaf ℓ_i.
Problem 2:
Prove that \(G \) or the complement of \(G \) is connected. Note that the complement of a graph \(G = (V, E) \) is \(G^c = (V, E') \) and \(\forall u, v \in V, \{u, v\} \in E' \iff \{u, v\} \notin E. \)

Solution:
If \(G \) is connected we are done.

If \(G \) is not connected then \(G \) is composed of multiple connected components. We want to prove that given two arbitrary vertices in \(G \) there must be a path between them in \(G^c \). Let these two arbitrary vertices be \(u \) and \(v \).

Case 1: \(u \) and \(v \) do not share an edge in \(G \)
This means they must share an edge in \(G^c \) and thus there is a path from \(u \) to \(v \) in \(G^c \).

Case 2: \(u \) and \(v \) share an edge in \(G \)
This means they were part of the same connected component in \(G \). Take an arbitrary vertex \(x \) in a different connected component in \(G \). Edges \(u - x \) and \(v - x \) must both exist in \(G^c \). Thus, there is a path \(u - x - v \) between vertices \(u \) and \(v \).

Thus, we have shown that there exists a path between any two arbitrary vertices in \(G^c \). By definition \(G^c \) must be connected. The claim is proved.