Topics Covered: Relations, Probabilistic Method

Problem 1:
Define an equivalence relation \(R \) on the set \(\{1, 2, 3, \ldots, 100\} \) with the restriction that there are exactly 2 equivalence classes. Find an \(R \) such that it maximizes the size of the relation, and then show that the size is maximized.
Problem 2:

Consider a set A with $n \geq 1$ elements. We color independently each of the elements of A red with probability $\frac{1}{3}$ and blue with probability $\frac{2}{3}$. Let R be the “is the same color as” relation on A, i.e. if a is the same color as b, then $(a, b) \in R$.

a) Is R an equivalence relation? If so, what are its equivalence classes?

b) Calculate the expected value of $|R|$.

Problem 3:
Let G be a bipartite graph with $|V| = n$. Suppose you give each vertex its own list more than $\log_2 n$ possible colors. Show that it is possible to provide a valid coloring of G choosing each vertex’s color from the list.