CIS 1600 Recitation 12
Binomial and Geometric Distribution, Hall’s Theorem, Relations

November 17, 2023
Hall’s Theorem

Let $G = (X, Y, E)$ be a bipartite graph. For any set S of vertices, let $N_G(S)$ be the set of vertices adjacent to vertices in S.

G contains a matching that saturates every vertex in X iff $|N_G(S)| \geq |S|$, $\forall S \subseteq X$. (Hall’s condition)
A binary relation is a set of ordered pairs.

For example, $R = \{(1, 2), (2, 3), (5, 4)\}$

$(1, 2) \in R$: 1 is related to 2 by relation R, we denote this by $1R2$.

A binary relation R from set A to B is a subset of the Cartesian product $A \times B$.

Relations
Properties of Relation

▶ Reflexive: for all \(x \in A \), \((x, x) \in R\).

▶ Irreflexive: for all \(x \in A \), \((x, x) \notin R\).

▶ Symmetric: for all \(x, y \in A \), \((x, y) \in R \implies (y, x) \in R\).

▶ Antisymmetric: for all \(x, y \in A \), \((x, y) \in R \) and \((y, x) \in R \implies x = y\).

▶ Transitive: for all \(x, y, z \in A \), \((x, y) \in R \) and \((y, z) \in R \implies (x, z) \in R\).

▶ Symmetric and antisymmetric are not opposites.