CIS 1600 Recitation 11
Binomial and Geometric Distribution, Relations, Memoryless Property, Chebyshev’s Inequality

November 9-10, 2023
Binomial Distribution

▶ A sequence of n Bernoulli trials that are independent and each has a probability p of success. How many successful outcomes?

▶ Example: A sequence of n coin flips in which the probability of obtaining heads is p. How many flips result in head?

▶ A binomial r.v. X with parameters n and p has the following distribution for $j = 0, 1, 2, ..., n$:

$$Pr[X = j] = \binom{n}{j} p^j (1 - p)^{n-j}$$

▶ $E[X] = np$ and $Var[X] = np(1 - p)$
A sequence of Bernoulli trials that are independent with each having a probability p of success, that stops after the first success.

Example: A sequence of coin flips in which the probability of obtaining heads is p. How many flips until we reach our first head?

$\Omega = \{H, TH, TTH, TTTTH, \ldots\}$

For any $\omega \in \Omega$ of length i, $Pr[\omega] = (1 - p)^{i-1}p$.
A geometric r.v. \(X \) with parameter \(p \) has the following distribution for \(i = 1, 2, \ldots \)

\[
Pr[X = i] = (1 - p)^{i-1}p
\]

\(E[X] = \frac{1}{p} \) and \(Var[X] = \frac{1-p}{p^2} \)

Memoryless Property. For geometric r.v. \(X \) with parameter \(p \) and for \(n > 0 \) and \(k \geq 0 \),

\[
Pr[X = n + k \mid X > k] = Pr[X = n]
\]
Chebyshev’s Inequality

Let X be a random variable. For all $a > 0$:

$$Pr\left[|X - E[X]| \geq a\right] \leq \frac{Var[X]}{a^2}$$
A binary relation is a set of ordered pairs.

For example, $R = \{(1, 2), (2, 3), (5, 4)\}$

$(1, 2) \in R$: 1 is related to 2 by relation R, we denote this by $1R2$.

A binary relation R from set A to B is a subset of the Cartesian product $A \times B$.