
CIS 160

Recitation Guide - Week 10

Topics Covered: Tail Bounds, Total Expectation, Memoryless Property, Hall’s Theorem

Problem 1:

Recall the following problem from last week’s recitation:

A 10 digit number with no zeroes is chosen by independently and randomly selecting each digit (1
- 9). Let N be the number of digits missing from the 10 digit number. Last week, we calculated
E[N ] ≈ 2.772 and Var[N ] ≈ 0.9232.

a) Using Markov’s Inequality, what is the lower bound of the probability that less than 6 digits
are missing?

b) How can you improve the bound you obtained above?

Solution:

a) We are looking to lower-bound Pr[N < 6]. Note that Markov’s Inequality gives information
about upper bounds on the probability that N is large. However, we also know that Pr[N <
6] = 1−Pr[N ≥ 6]. Also, keep in mind we can apply Markov’s Inequality because N represents
the number of missing digits, so N is a non-negative random variable. We begin from the
information that Markov’s Inequality guarantees us:

Pr[N ≥ a] ≤ E[N ]

a
(Markov’s Inequality)

Pr[N ≥ 6] ≤ E[N ]

6
(a = 6)

Pr[N ≥ 6] ≤ 2.772

6
(E[N ] ≈ 2.772)

Solving for lower bound,

Pr[N < 6] = 1− Pr[N ≥ 6]

≥ 1− 2.772

6
= 0.5381

b) We can use Chebyshev’s inequality:

Pr[|N − E[N ]| ≥ a] ≤ Var[N ]

a2
(Chebyshev’s Inequality)

Choose a = 6− 2.772 = 3.228. We have

Pr[|N − 2.772| ≥ 3.228] ≤ 0.9232

3.2282
≈ 0.0886
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As N is non-negative, we have that

Pr[N ≥ 6] ≤ 0.0886

Using the same rearranging of terms from part a), we get

Pr[N < 6] ≥ 0.9114
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Problem 2:

For a geometric random variable X with parameter p, where n > 0 and k ≥ 0, we have the
memoryless property

Pr[X = n + k | X > k] = Pr[X = n]

The following is the definition of conditional expectation.

E[Y |Z = z] =
∑
y

y · Pr[Y = y |Z = z],

a) Prove the law of total expectation below. Given any random variables X,Y , defined in the
same sample space,

E[X] =
∑
y

E[X|Y = y] Pr[Y = y]

b) Calculate the expectation of a geometric random variable with the memoryless property and
the law of total expectation.

Solution:

a) We have

E[X] =
∑
x

x · Pr[X = x]

=
∑
x

x ·
∑
y

Pr[X = x|Y = y] · Pr[Y = y] (By Law of Total Probability)

=
∑
y

Pr[Y = y] ·
∑
x

x · Pr[X = x|Y = y]

=
∑
y

Pr[Y = y] · E[X|Y = y]

b) We calculate the expectation of a geometric random variable X with parameter p as follows.
Seeing as we have the memoryless property, we condition X on the result of the first trial.

Formally, let Y be the indicator random variable that represents the outcome of the first
Bernoulli trial, where Y = 0 if the first trial is a failure and Y = 1 otherwise. Using the law
of total expectation, we have

E[X] = E[X | Y = 0] · Pr[Y = 0] + E[X | Y = 1] · Pr[Y = 1]

= E[X | Y = 0] · Pr[Y = 0] + 1 · p

We see that if the first trial was a success, then expectation of X is 1, as there will be no
more trials.

Intuitively, since X is memoryless, if the first trial was a failure, the expected number of trials
would just be E[X] + 1. Rigorously, we attempt to use the memoryless property on the first
term. We have

E[X | Y = 0] =
∞∑
x=1

x · Pr[X = x | Y = 0]

= 1 · Pr[X = 1 | Y = 0] +
∞∑
x=2

x · Pr[X = x | Y = 0] (Splitting the sum)
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Note that if Y = 0, then the first trial is a failure. Then X cannot equal 1, because X = 1
means that there was a success on the first trial. Therefore Pr[X = 1 | Y = 0] = 0.

Note also that Y = 0 if and only if X > 1, since we must have gone through more than one
trial to obtain a success. Substituting these in, we get:

E[X | Y = 0] = 0 +
∞∑
x=2

x · Pr[X = x | X > 1]

=

∞∑
x=2

x · Pr[X = (x− 1) + 1 | X > 1]

=
∞∑
x=2

x · Pr[X = x− 1] (By the memoryless property)

=

∞∑
x=1

(x + 1) · Pr[X = x] (Shifting the lower bound back to 1)

=
∞∑
x=1

x · Pr[X = x] +
∞∑
x=1

Pr[X = x]

= E[X] + 1

Hence, putting everything together, we have

E[X] = (1− p) · (E[X] + 1) + p

E[X] = (1− p) · E[X] + (1− p) · 1 + p

E[X]− (1− p) · E[X] = 1− p + p

E[X] · [1− (1− p)] = 1

E[X] · (p) = 1

E[X] =
1

p
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Problem 3:
Consider a normal chessboard (an 8× 8 grid). In each row and in each column there are exactly n
pieces, where 0 < n ≤ 8. Prove that we can pick 8 pieces such that no two of them are in the same
row or column.

Solution:

We construct a bipartite graph G as follows. Let X be the set of rows modeled as vertices. Let Y
be the set of columns modeled as vertices. Let E be the set of edges such that if a piece exists in
row i and column j, then there is an edge between xi ∈ X and yj ∈ Y . Note that the graph must
be bipartite because no edges exist between two vertices in X or two vertices in Y .

The question asks us to find a matching: can we match each of the 8 rows to a unique column?
Note that this would mean that we could pick 8 edges (in our matching) that are not in the same
row or same column.

We must prove the existence of such a perfect matching. First, note that the size of our two
bipartite sets X and Y are the same since there are exactly 8 rows and 8 columns; in other words,
|X| = |Y | = 8. Hence, if we can find a matching that saturates X, then it must also saturate
Y (and so is a perfect matching). To prove the existence of this matching, we show that Hall’s
Condition is satisfied, that is that |NG(S)| ≥ |S|,∀S ⊆ X.

Consider an arbitrary but particular subset A ⊆ X (of the rows). Recall that there are n pieces in
each row and n pieces in each column. Thus, there must be n|A| edges from A to NG(A). We also
know that each column in NG(A) has at most n edges back to A, meaning that there are at most
n|NG(A)| edges from NG(A) to A. This means that n|A| ≤ n|NG(A)|, meaning that |A| ≤ |NG(A)|.
This satisfies Hall’s Condition, leading us to prove the existence of our matching.
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