
CIS 1210—Data Structures and Algorithms—Spring 2025

Deterministic 2-SAT—Spring 2025

2-SAT Problem Statement

Definition: A literal is boolean variable α it in generic form (ie not specifically true or false). A variable is
a literal either in its true α or false α form.

Definition: A clause in 2-CNF is at most 2 variables separated by an “or” (∨) operator.

Definition: A boolean formula ϕ is in 2-CNF if it is one or more clauses separated by an “and” (∧) operator.

For example: (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) is in 2-CNF but (x1 ∨ x2 ∨ x3) or ¬(x1 ∨ x2) is not.

Now for the formal problem statement.

Input: A boolean formula ϕ in 2-CNF with n literals and m clauses.

Goal: Determine if there exists an assignment to literals to make ϕ evaluate to true.

A Deterministic Algorithm

To solve the problem we will reduce it to a graph problem. This means we are going to take our input ϕ and
represent it as an equivalent graph that encodes the same information as ϕ, and solve a problem related to
that graph instead. For notation let ϕ contain the n literals x1, x2, . . . , xn.

Let G = (V,E) be the implication graph of a 2-CNF formula ϕ. G is a directed graph containing 2n vertices
where each vertex vx1

, vx1
, vx2

, vx2
, . . . vxn

, vxn
represents a corresponding variable in ϕ. Then for a clause

(α ∨ β) where α and β can be either xi or xi we add the edges (vα, vβ) and (vβ , vα). You can think of an
edge from α to β in the implication graph as meaning “if α is true then β must also be true in a satisfying
assignment to ϕ”, hence why it is called the implication graph.

For example, for the following formula (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3), this is our implication graph.

x1x1

x2x2

x3x3

Note: For the rest of this proof we will use the vertex label vxi or vα interchangeably with the variables xi

or α.

1



Theorem 1. If there exists an xi such that there is a path from xi to xi and a path from xi to xi in
the implication graph of ϕ, then ϕ is not satisfiable.

Proof. Assume for contradiction that xi to xi and xi to xi paths exist yet ϕ is satisfiable. Let σ be a
satisfying assignment to ϕ.

Case 1: xi = true in σ: Let the corresponding variables along the path from xi to xi be p1, p2, . . . pk where
p1 = xi and pk = xi. Since xi = true, xi must be false. Thus there must exist some edge on this path
(pj , pj+1) where pj is true and pj+1 is false in σ. Since (pj , pj+1) ∈ E then (pj ∨ pj+1) ∈ ϕ. However this
clause evaluates to false in σ a contradiction that σ is a satisfying assignment for ϕ.

Case 2: xi = false in σ: This case follows by the same logic as case 1 but we consider the path from xi to
xi instead. We leave this an exercise for the reader.

To show the converse we will provide algorithm such that given the implication graph of ϕ we will construct
an assignment σ such that ϕ is satisfied.

DetermineSatisfyingAssignment(G)

Run Kosarajus on G to get GSCC = (V SCC , ESCC)

Compute the topological ordering of GSCC

Let σ be an empty assignment

for each v in V SCC in reverse topological order

for each variable α corresponding to vertices in v

if α has not been assigned , assign α to be true in σ
and α to be false in σ

return σ

In english we create the implication graph G. Then we create GSCC and topologically sort it. Then in
reverse topological order we assign all the variables in a sink SCC to be true, and their opposite variables to
be false, which we will show later must be in a source SCC. We repeat this process through the graph. By
assumption α and α will not be in the same SCC so this will assign all literals to either true or false.

To prove the correctness of this algorithm we first need to show the following lemmas.

Lemma 1. For any two variables α and β if there is a path from α to β then there is a path from β to
α.

Proof. Consider the path from α to β, and let the vertices on the path be p1, p2, . . . , pk where p1 = α
and pk = β. For an arbitrary edge along this path (pi, pi+1) we added this edge to G since the clause
(pi ∨ pi+1) ∈ ϕ. Since that clause is in ϕ we also know that the edge (pi+1, pi) is also in G.

Thus for the edges
(p1, p2), (p2, p3), . . . (pk−1, pk)

there are corresponding edges
(pk, pk−1), (pk−1, pk−2), . . . , (p2, p1)

Thus a path from β to α.

2



Lemma 2. If α and β are in the same SCC then so are α and β.

Proof. If α and β are in the same SCC then there is a path from α to β and one from β to α. Thus by
Lemma 1 there are also paths from α to β and β to α. Thus β and α are in the same SCC.

Lemma 3. If α and β are in a sink SCC then α and β are in a source SCC.

Proof. We know that if α and β are in the same SCC call it C then by Lemma 2, α and β are in the same
SCC call it C. It remains to show that if C is a sink then C is a source.

Assume towards contradiction that C is not a source. This implies there are two vertices γ /∈ C and u ∈ C
such that (γ, u) ∈ E. By the same logic as Theorem 1, we know (u, γ) ∈ E. We also know that by Lemma
2. that u and γ can not be in the same SCC and that u ∈ C. Thus C has an outgoing edge to γ making C
not a sink. Contradiction!

With the above lemmas we have what we can return to the converse of Theorem 1 but in a new form.

Theorem 2. If ϕ is satisfiable our algorithm produces a valid assignment σ that evaluates ϕ to be true.

Proof. First note that our assignment σ is valid since for each literal it either assigns it true or false (ie. it
never assigns xi and xi to both be true). It remains to show that ϕ is satisfied by σ.

Assume towards contradiction that ϕ is satisfiable but σ results in ϕ being false. This implies that there
exists some clause (α∨β) such that α = false and β = false in σ. In the execution of our algorithm W.L.O.G
assume that α was assigned to false first.

Since (α ∨ β) ∈ ϕ, we know that (α, β) ∈ E and (β, α) ∈ E. Let us consider the instance in the algorithm
that α was assigned false. This was caused by the variable α = true.

Case 1: α and β are in the same SCC: By Lemma 2 We know that β and α are in the same SCC. We also

know that the edges (α, β) and (β, α) exist. Thus either α and α are in the same SCC which by Theorem 1
ϕ is not satisfiable a contradiction! Or α and α are in different SCCs. However since there is a path from α
to β and a path from β to α, this implies that α’s SCC must come later in the topologcal ordering of GSCC .
Thus we would have assigned α = true first a contradiction!

Case 2: α and β are in different SCCs: By Lemma 2 we know that α and β are in different SCCs as well. Let
us consider the order that the SCCs can fall in the topological ordering. Since we assumed α was assigned
before β this implies that α comes after β in the topological ordering. Since the edges (α, β) and (β, α) that
only leaves with the following three orderings:

β, α, α, β or β, α, β, α or β, α, α, β

However in the first two cases α appears after α in the topological ordering. Thus α would have been assigned
to true before α was assigned to true, a contradiction. In the third case β would have been assigned to true,
also a contradiction.

3



Implementation and Running Time

To implement the entire algorithm we first need to create the implication graph, and run Kosaraju’s algo-
rithm on it. Graph has 2n vertices and since each clause contributes 2 edges, O(m) edges. Thus the overall
runtime of graph construction and Kosaraju’s is O(n+m).

Then we need to check if for each xi if xi and xi appear in the same SCC. Let us assume our xi are mapped
to the range [1, 2n] where xi → 2i and xi → 2i+1 and appear in that order in the adjacency list. Thus in if
we build an array S[1..2n] where S[i] is the SCC of vertex i, we just need to ensure that S[i] ̸= S[i+ 1] for
i = 1, 3, 5, . . . , 2n− 1. Constructing the array involves traversing the DFS forest in O(n) time and iterating
through S in O(n) time.

Lastly we run DetermineSatisfyingAssignment which involved running an additional toposort in O(n+m)
time, and iterating through all and all literals of each SCC. Note that we can store our assignment σ in an
array σ[1..n] where σ[i] =true if xi = true. We can also do the same for a “has been assigned” array. Thus
each literal can be assigned and checked if has already been assigned in O(1) time, leading to an overall
runtime of O(n+m).

4


	2-SAT Problem Statement
	A Deterministic Algorithm
	Implementation and Running Time


