Overriding, Enums, Exceptions
Announcements

• HW07: PennPals is available
 – Due Tuesday: November 17th
 – Start Early!
 – Emphasizes: Java Collections, Design

• Midterm 2:
 – Solutions are up on the web site
 – You can examine your exams starting tomorrow
 – Levine 308
Midterm 2 Results

Average: ~72
Median: ~73
Std. Dev: ~13
Max: 100

75 – 100 : A
70 – 75 : B+/A-
55 – 70 : B
45 – 50 : C
< 45 : D or F
Poll

Have you started HW 07 PennPals?

1. No
2. I've thought about the ServerModel structure
3. I've got the basics working
4. I'm Done
Intentional Overriding

Abstract Classes
Abstract Classes

• Are like classes, but with some method implementations omitted.
 – They are instead declared abstract

• Non-abstract subclasses must provide an implementation of the missing methods

• Why? When there is a general algorithm whose implementation depends on the behavior of subtypes' implementation
 – E.g. removeAll defined in terms of remove in the Collections library
When To Override?

• Only override methods when the parent class is *designed* specifically to support such modifications:
 – If the library designer specifically describes the behavioral contract that the parent methods assume about overridden methods (e.g. equals, paintComponent)
 – If you’re writing the code for both the parent and child class (and will maintain control of both parts as the software evolves) it might be OK to override.
 – Either way: document the design
 – Use the `@Override` annotation to mark intentional overriding

• Look for other means of achieving the desired outcome:
 – Use composition & delegation (i.e. wrapper objects) rather than overriding
How to prevent overriding

• By default, methods can be overridden in subclasses.
• The final modifier changes that.
• Final methods cannot be overridden in subclasses
 – Prevents subclasses from changing the “behavioral contract” between methods by overriding
 – static final methods cannot be hidden

• Similar, but not the same as final fields and local variables:
 – Act like the immutable name bindings in OCaml
 – Must be initialized (either by a static initializer or in the constructor) and cannot thereafter be modified.
 – static final fields are useful for defining constants (e.g. Math.PI)
Digression: Enumerations

See: ChatDemo.java
Enumerations (a.k.a. Enum Types)

- Java supports *enumerated* type constructors.
 - These are a bit like OCaml’s datatypes.
- Example (from Chat HW) ServerError:

```java
public enum ServerError {
    OKAY(200),
    INVALID_NAME(401),
    NO_SUCH_CHANNEL(402),
    NO_SUCH_USER(403),
    ...

    // The integer associated with this enum value
    private final int value;
    ServerError(int value) {
        this.value = value;
    }
    public int getCode() {
        return value;
    }
}
```
Using Enums: Switch Cases

// Use of 'enum' from CommandParser.java (Chat HW)
CommandType t = ...

switch (t) {
 case CREATE : System.out.println("Got CREATE!"); break;
 case MESG : System.out.println("Got MESG!"); break;
 default: System.out.println("default");
}

• Multi-way branch, similar to OCaml’s match
 – Not pattern matching! (Cannot bind subcomponents of an Enum)

• The default keyword specifies the “catch all” case.
What will be printed by the following program?

```java
Command.Type t = Command.Type.CREATE;

switch (t) {
    case CREATE : System.out.println("Got CREATE!");
    case MESG  : System.out.println("Got MESG!");
    case NICK  : System.out.println("Got NICK!");
    default    : System.out.println("default");
}
```

1. Got CREATE!
2. Got MESG!
3. Got NICK!
4. default
5. something else
• **GOTCHA**: Must use explicit `break` to avoid “fallthrough”
 – without break, the code of the next branch will be run too!

• The program in the quiz prints all of the strings:

 Got CREATE!
 Got MESG!
 Got NICK!
 default
Enumerations

- Enum types are just a convenient way of defining a class along with methods of a class.
 - Enum types (implicitly) extend java.lang.Enum
 - They can contain constant data “properties”
 - As classes, they can have methods: e.g. to access a field
 - Intended to represent constant data values.

- Automatically generated static methods:
 - `valueOf`: converts a String to an Enum
    ```java
    Command.Type c = Command.Type.valueOf("CONNECT");
    ```
 - `values`: returns an Array of all the enumerated constants
    ```java
    Command.Type[] varr = Command.Type.values();
    ```
Exceptions

Dealing with the unexpected
Why do methods “fail”?

• Some methods make requirements of their arguments
 – Input to max is a nonempty list, Item is non-null, more elements for next

• Interfaces may be imprecise
 – Some Iterators don't support the "remove" operation

• External components of a system might fail
 – Try to open a file that doesn't exist

• Resources might be exhausted
 – Program uses all of the computer's disk space

• These are all \textit{exceptional circumstances}...
 – how do we deal with them?
Ways to handle failure

• Return an error value (or default value)
 – e.g. Math.sqrt returns NaN ("not a number") if given input < 0
 – e.g. Many Java libraries return null
 – e.g. file reading method returns -1 if no more input available
 – *Caller must check return value, but it’s easy to forget*
 – *Use with caution – easy to introduce nasty bugs!*

• Use an informative result
 – e.g. in OCaml we used options to signal potential failure
 – e.g. in Java, we can create a special class like option
 – *Passes responsibility to caller, but caller forced to do the proper check*

• Use exceptions
 – Available both in OCaml and Java
 – Any caller (not just the immediate one) can handle the situation
 – If an exception is not caught, the program terminates
Exceptions

• An exception is an object representing an abnormal condition
 – Its internal state describes what went wrong
 – e.g. NullPointerException, IllegalArgumentExceptionException, IOException
 – Can define your own exception classes

• *Throwing* an exception is an emergency exit from the current context
 – The exception propagates up the invocation stack until it either reaches the top of the stack, in which case the program aborts with the error, or the exception is *caught*

• *Catching* an exception lets callers take appropriate actions to handle the abnormal circumstances
private void load(String filename) {
 ImageIcon icon;

 try {
 if (((new File(filename)).exists()))
 icon = new ImageIcon(filename);
 else {
 java.net.URL u = new java.net.URL(filename);
 icon = new ImageIcon(u);
 }
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 ...
}
What happens if we do (new C()).foo()?

1. Program stops without printing anything
2. Program prints “here in bar”, then stops
3. Program prints “here in bar”, then “here in foo”, then stops
4. Something else
Abstract Stack Machine

Workspace

Stack

Heap

(new C()).foo();
Abstract Stack Machine

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Stack</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(new $C()$).foo();</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Allocate a new instance of C in the heap. (Skipping details of trivial constructor for C.)
Abstract Stack Machine

Workspace: \(C \).

Stack:

Heap:

\(foo() \);
Save a copy of the current workspace in the stack, leaving a “hole”, written _, where we return to. Push the this pointer, followed by arguments (in this case none) onto the stack. Use the dynamic class to lookup the method body from the class table.
Abstract Stack Machine

Workspace

```java
this.bar();
System.out.println("here in foo");
```

Stack

```java
_;
this
```

Heap

```
C
```
this.baz();
System.out.println("here in bar");
Abstract Stack Machine

Workspace

this.baz();
System.out.println("here in bar");

Stack

_;
this
_; System.out.println("here in foo");
this

Heap

C
throw new RuntimeException();

this

_system.out.println("here in foo");

this

_system.out.println("here in bar");

this
throw new RuntimeException();

C

_;
this

_;
System.out.println("here in foo");
this

_;
System.out.println("here in bar");
this
Abstract Stack Machine

Workspace

throw ();

Stack

_;

this

_; System.out.println("here in foo");

this

_; System.out.println("here in bar");

this

Heap

C

RuntimeException
Pop saved workspace frames off the stack, looking for the most recently pushed one with a try/catch block whose catch clause matches (a supertype of) the exception being thrown.

If no matching catch is found, abort the program with an error.
Pop saved workspace frames off the stack, looking for the most recently pushed one with a try/catch block whose catch clause matches (a supertype of) the exception being thrown.

If no matching catch is found, abort the program with an error.
Pop saved workspace frames off the stack, looking for the most recently pushed one with a try/catch block whose catch clause matches (a supertype of) the exception being thrown.

If no matching catch is found, abort the program with an error.
Abstract Stack Machine

Workspace

Stack

Heap

Discard the current workspace.

Then, pop saved workspace frames off the stack, looking for the most recently pushed one that contains a try/catch block whose catch clause declares a supertype of the exception being thrown.

If no matching catch is found, abort the program with an error.
Discard the current workspace.

Then, pop saved workspace frames off the stack, looking for the most recently pushed one that contains a try/catch block whose catch clause declares a supertype of the exception being thrown.

If no matching catch is found, abort the program with an error.
Program terminated with uncaught exception (!)!

Discard the current workspace.

Then, pop saved workspace frames off the stack, looking for the most recently pushed one that contains a try/catch block whose catch clause declares a supertype of the exception being thrown.

If no matching catch is found, abort the program with an error.
Now what happens if we do `(new C()).foo()`?
Abstract Stack Machine

Workspace

Stack

Heap

(new C()).foo();
Abstract Stack Machine

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Stack</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>(new C()).foo()</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Allocate a new instance of C in the heap.
Save a copy of the current workspace in the stack, leaving a “hole”, written _, where we return to. Push the this pointer, followed by arguments (in this case none) onto the stack.
Abstract Stack Machine

Workspace

```
this.bar();
System.out.println("here in foo");
```

Stack

```
-
this
```

Heap

```
C
```
try {
 baz();
} catch (Exception e) {
 System.out.println("caught");
} System.out.println("here in bar");
When executing a try/catch block, push onto the stack a new workspace that contains all of the current workspace except for the try { ... } code.

Replace the current workspace with the body of the try.
Abstract Stack Machine

When executing a try/catch block, push onto the stack a new workspace that contains all of the current workspace except for the try \{ ... \} code.

Replace the current workspace with the body of the try.
Abstract Stack Machine

Workspace

this.baz();

Continue executing as normal.

Stack

this

Stack

_;

this

System.out.println("here in foo");

this

_; catch (RuntimeException e) { System.out.println("caught"); }

System.out.println("here in bar");
throw new RuntimeException();

C

The top of the stack is off the bottom of the page... 😊
Abstract Stack Machine

Workspace

throw new RuntimeException();

Stack

--;

d this

--; System.out.println("here in foo");

d this

--; catch (RuntimeException e) {
 System.out.println("caught");
} System.out.println("here in bar");

--;
throw ();

_;
	null

_; System.out.println("here in foo");

this

_;

catch (RuntimeException e) {
	System.out.println("caught");
} System.out.println("here in bar");

_;
Discard the current workspace.

Then, pop saved workspace frames off the stack, looking for the most recently pushed one that contains a try/catch block whose catch clause declares a supertype of the exception being thrown.

If no matching catch is found, abort the program with an error.
Discard the current workspace.

Then, pop saved workspace frames off the stack, looking for the most recently pushed one that contains a try/catch block whose catch clause declares a supertype of the exception being thrown.

If no matching catch is found, abort the program with an error.
When a matching catch block is found, add a new binding to the stack for the exception variable declared in the catch. Then replace the workspace with catch body and the rest of the saved workspace.

Continue executing as usual.
Abstract Stack Machine

Workspace

```java
{ System.out.println(“caught”); }
System.out.println(“here in bar”);
```

When a matching catch block is found, add a new binding to the stack for the exception variable declared in the catch. Then replace the workspace with catch body and the rest of the saved workspace.

Continue executing as usual.
Abstract Stack Machine

Workspace

```
{ System.out.println("caught"); }
System.out.println("here in bar");
```

Continue executing as usual.

Stack

```
_;
this

_; System.out.println("here in foo");
this
e
```

Heap

C

Runtime Exception
Abstract Stack Machine

Workspace

```java
{ ; ;
System.out.println("here in bar");
```

Heap

```
_;
this
_;
System.out.println("here in foo");
this
e
```

Continue executing as usual.

Console caught
Abstract Stack Machine

We’re sweeping a few details about lexical scoping of variables under the rug – the scope of e is just the body of the catch, so when that is done, e must be popped from the stack.

Console caught
Abstract Stack Machine

Workspace

System.out.println("here in bar");

Heap

Continue executing as usual.

Console caught

Runtime Exception

C

Stack

_; System.out.println("here in foo");

this

this
Console caught

Continue executing as usual.

```java
System.out.println("here in bar");
System.out.println("here in foo");
```
Pop the stack when the workspace is done, returning to the saved workspace just after the _ mark.

Console
caught
here in bar
Abstract Stack Machine

System.out.println("here in foo");

Continue executing as usual.

Console caught here in bar
Abstract Stack Machine

Workspace

System.out.println("here in foo");

Stack

_; this

Heap

Runtime Exception

Continue executing as usual.

Console
caught
here in bar
Continue executing as usual.

Console
caught
here in bar
here in foo
Program terminated normally.

Console
caught
here in bar
here in foo
When No Exception is Thrown

• If no exception is thrown while executing the body of a try {...} block, evaluation *skips* the corresponding catch block.
 – i.e. if you ever reach a workspace where “catch” is the statement to run, just skip it:

```java
Workspace

catch (RuntimeException e) {
    System.out.println(“caught”);
}
System.out.println(“here in bar”);

Workspace

System.out.println(“here in bar”);
```
Catching Exceptions

- There can be more than one “catch” clause associated with each “try”
 - Matched in order, according to the *dynamic* class of the exception thrown
 - Helps refine error handling

```java
try {
    ...
    // do something with the IO library
} catch (FileNotFoundException e) {
    ...
    // handle an absent file
} catch (IOException e) {
    ...
    // handle other kinds of IO errors.
}
```

- Good style: be as specific as possible about the exceptions you’re handling.
 - Avoid `catch (Exception e) {...}` it’s usually too generic!