
CIS 1100
Objects (Using and

starting to make them)!

Python

Spring 2025

University of Pennsylvania

Note
Using Objects
 - last day to register to vote is today. Need to do it by midnight
 - REVIEW
 - objects can be created
 - keeps track of state,
 - can abstract things away
 - (L11) If we wanted to make a class that represents a
 - designed to have various attributes
 - PS: Attributes == Fields
 - accessing fields
 - methods
 - comparing fields and methods
 - confusing: similar to calling functions in packages

 - Wich of these are (A) method calls, (B) accessing fields, or (C) neither
 (M1 - M6)
 - str.upper()
 - movie.name
 - move.price_adjust_inflation()
 - penndraw.filled_square()
 - len(str)
 - rat_num.numerator

 - alias and references
 - as parameters
 - S7, S8, S9
 - given these functions, and calling them like this: what do you think is printed:

 def add_five(num):
 num += 5

 def main():
 x = 3
 add_five(x)
 print(num)

 def list_add_five(to_add):
 to_add.append(5)

 def main():
 my_list = [3]
 list_add_five(my_list)
 print(my_list)

 def string_add_five(to_add):
 to_add += "5"

 def main():
 my_string = "3"
 string_add_five(my_string)
 print(my_string)

 - not as parameters
 def main():
 my_list = []
 my_list.append(3)
 other = my_list
 other.append(16)

 print(my_list)
 print(other)

 - example with datetime
 // What do you think gets printed (S10)
 def main():

Got to about here in 24 fa
Probalby should re-arrange when I started talking about mutailbity. Should have some examples with mutable references first and visualizations before explaining immutability.
Could just re-order the slide

Creating Objects
 - Data Class
 - fields
 - lists - dicts - set - tuple type notation
 - (C??) Write a dataclass that has three fields:
 - Circle
 - float width
 - float center_x
 - float center_y
 - tuple(int, int, int) color

NEXT LECTURE:
 - What are methods?
 - adding methods to a dataclass
 - (C??) Write a method that does blah
 - contains_point(int x, int y)
 - Not using a data-class, we want to write our own custom data-class
 - simple example with an int_pair
 - (C??) Write the constructor for rat_num
 - demo the gcd() function

Demo FFF

Reminder: Exam!

Monday, March 3 in class

Please arrive a bit early if you can—no more than 15 minutes though

Exam review session on Sunday March 2 from 2:30-4:30 in Towne 100

1

A class in Python is a construct that allows us to

"bundle data and functionality together." *

* From the Python documentation on classes

A class consists of:

Review: What is an object/class?

A class defines a new data type!

Allows instances of that class to be created.

Some attributes (also called fields) that store data

Some functions that operate with these fields

These allow us to create abstractions that are easier to wrap your head around.

2

Some features of a class could also be achieved from a tuple,

but consider... Which of these better communicates its purpose?

c = (0.5, 0.5, 0.25)

Review: Class as a tool for abstraction

3

Some features of a class could also be achieved from a tuple,

but consider... Which of these better communicates its purpose?

c = (0.5, 0.5, 0.25)

c = Circle(x_center = 0.5, y_center = 0.5, radius = 0.25)

Review: Class as a tool for abstraction

4

To build a class, we need to decide which attribute we will include in our abstraction.

Let's say we wanted to make an object that represented a Penn course, what attributes might

we want to store in that class? What types would they be? (L11)

Review: Attributes

5

If we have an object that we want to access

the fields of, we can do so using the . operator

good_movie = Movie("Actual People", 2021, 84, "Drama", "Digital", 3.2)
the_name = good_movie.name
print(good_movie.name)
if (good_movie.length > 120):
 print("TOO LONG")
good_movie.genre = "twentysomething " + travis.genre

(NOTE: we do not use () when accessing attributes directly.

() is usually used to indicate some sort of function call)

Review: Syntax

6

Wich of these are (A) method calls, (B) accessing attributes, or (C) neither

Practice:

(M1) name.upper()

(M2) my_movie.name

(M3) my_move.price_adjust_inflation(2020)

(M4) penndraw.set_pen_color(penndraw.BLACK)

(M5) len(name)

(M6) number.numerator

7

A variable is like a "box" inside of

which a piece of data is placed.

Variables, Before

8

A variable is a named portion of memory that contains data of a particular type.

Variables do not directly contain data. Instead, data is

stored in a separate portion of the computer's memory.

Instead of storing the data directly, variables of

these types tell us how to find the data elsewhere!

Let's drill down.

Variables, Now

9

References

my_nums = [3]
my_nums.append(2)
my_nums.append(5)

All Types Are Reference Types

Reference variables do not store simple values directly!

Reference variables store a reference to some object

The object that the reference refers to is known as its pointee

Literally: an address that describes where the

object is stored in the computer's memory.

10

Some types are designed to be immutable types. string , int , float , bool , tuple*.

Even if we pass a reference to them, we cannot modify them.

number = 5
x = number + 3 # number is not changed, it's value is used as part of a computation
number += 2 # equivalent to number = number + 2, similar to previous line

name = "Nujabes"
name.upper() # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Mutability

11

Lets look at the string a little closer

name = "Nujabes" <-
name.upper() # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Memory Diagram:

Immutable Type

12

Lets look at the string a little closer

name = "Nujabes"
name.upper() <- # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Memory Diagram:

Immutable Type

13

Lets look at the string a little closer

name = "Nujabes"
name.upper() <- # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Memory Diagram:

Immutable Type

14

Lets look at the string a little closer

name = "Nujabes"
name.upper() # does nothing, returns a new string "NUJABES"
name = name.upper() <- # Reassigns name to a new string

Memory Diagram:

Immutable Type

15

References get more tricky when we

start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5] # <-------
 other = my_nums
 func(my_nums)
 other[1] = 1100
 print(my_nums)

References to

Mutable Types

16

References get more tricky when we

start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums # <-------
 func(my_nums)
 other[1] = 1100
 print(my_nums)

References to

Mutable Types

17

References get more tricky when we

start thinking about mutable types.

Consider:

def func(some_list): # <-------
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums) # <-------
 other[1] = 1100
 print(my_nums)

References to

Mutable Types

18

References get more tricky when we

start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400) # <-------

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums)
 other[1] = 1100
 print(my_nums)

References to

Mutable Types

19

References get more tricky when we

start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums) # <--------
 other[1] = 1100
 print(my_nums)

References to

Mutable Types

20

References get more tricky when we

start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums)
 other[1] = 1100 # <--------
 print(my_nums)

References to

Mutable Types

21

What gets printed?

S6

def add_five(num):
 num += 5

def main():
 x = 3
 add_five(x)
 print(x)

S7

def list_add_five(to_add):
 copy = to_add
 copy.append(copy[0] + 5)

def main():
 my_list = [3]
 list_add_five(my_list)
 print(my_list)

Practice

22

Given a class called Point with two fields, x and y , what gets printed?

(S10)

p = Point(x=2024, y=10) # you can assume this works
not_p = p
not_p.x = 2015
p.x += 2

m = p.y
m += 1

print(p.x)
print(m)
print(p.y)

Practice

23

If we wanted to make the Point object in the previous slide we would do:

from dataclasses import dataclass

@dataclass # mark the class as a data class
class Point: # Declare a class
 x: int # declare the field names and their types
 y: int

In Python, a dataclass is the simplest kind of class.

Review Data Class

Defined (in most basic case) just by what properties that members of this class should have.

24

Note
DID NOT GET TO HERE

If we want to have a data class with more advanced

type notations, it would look something like this:

from dataclasses import dataclass

@dataclass
class Example:
 x: list[int] # list of integers
 y: dict[str, int] # dictionary, keys are strings, value are ints
 z: tuple[int, int, str] # a tuple of two ints and a string

More advanced type annotations

25

(C12) Write a dataclass that represents a Square with three fields:

Practice:

a float to represent the half_width

two more float values to represent the center_x and center_y

a tuple containing three integers to represent the color

26

Next time

More on objects and creating them!

We will do some code that is VERY relevant for the next homework (FFF)

27

	Objects (Using and starting to make them)!
	Reminder: Exam!
	Review: What is an object/class?
	Review: Class as a tool for abstraction
	Review: Class as a tool for abstraction
	Review: Attributes
	Review: Syntax
	Practice:
	Variables, Before
	Variables, Now
	All Types Are Reference Types
	Mutability
	Memory Diagram: Immutable Type
	Memory Diagram: Immutable Type
	Memory Diagram: Immutable Type
	Memory Diagram: Immutable Type
	References to Mutable Types
	References to Mutable Types
	References to Mutable Types
	References to Mutable Types
	References to Mutable Types
	References to Mutable Types
	Practice
	Practice
	Review Data Class
	More advanced type annotations
	Practice:
	Next time

