
CIS 1100
Types & Variables! (Lecture) Python

Fall 2024
University of Pennsylvania

Let’s start with a simpler example:

name = "Joel"

What this does is it creates
a Variable named "name"
holding the value "Joel".

You can think of a variable
as being similar to a box
with a name attached to it.

Review: Variables

1

Let’s start with a simpler example:

name = "Joel"

The value within the box can change over the lifetime
of the program (i.e. while it is being run or executed).

However, it can only hold one thing at a time.

Review: Variables

2

We can print variables, similar to how we print strings:

name = "Joel is aight."
print(name) # prints "Joel is aight."

When we pass a variable into a function this tells python to see what is within "that box".

Printing Variables

3

Variables can change over the course of
a program, and can only hold one value.

Consider:

name = "Harry" # line a <-----
name = "Joel" # line b
print(name)

Variables Change

4

Variables can change over the lifetime of
a program, and can only hold one value.

Consider:

name = "Harry" # line a
name = "Joel" # line b <-----
print(name)

Review: Variables
Change over Time

5

S7:
How many values is fruit set to by the time we call the print() function?

Consider:

fruit = "apple"
fruit = "banana"
veggie = "ew"
veggie = "lettuce"
fruit = "pear"
fruit = "tomato" # yes I know, bite me.
print(fruit) # printing here!
fruit = "Pitaya"

Lecture Activity

6

S7:
How many values is fruit set to by the time we call the print() function?

Consider:

fruit = "apple"
fruit = "banana"
veggie = "ew"
veggie = "lettuce"
fruit = "pear"
fruit = "tomato" # yes I know, bite me.
print(fruit) # printing here!
fruit = "Pitaya"

We want to enforce early on that code runs sequentially.
From top to bottom. One line at a time.

Lecture Activity

7

For best practices We follow lower_snake_case when naming variables.

M1:
Consider the following variables. Which are both legal (correct python syntax) and follow
lower_snake_case?

a) local_counter3
b) exec_and_fork
c) AwesomeVariable
d) awesome_Variable
e) import

Lecture Activity: Variable Naming and Style

8

As we gain more experience in python, we'll see that there are a
couple of special words that are reserved for special purposes.

These are called keywords.

As mentioned before, we use an import keyword to tell the
computer we would like to use Penn Draw in our python program.

import penndraw as pd # 'import' and 'as' are two key words here
pd.line(1, 1, 0, 0)
pd.point(.5, .75)
pd.run()

Why can't we use import?

9

Although, it's not important to know all the keywords now, here they are.
Note: we've already seen as and import as keywords!

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

Why can't we use import?

10

Term Definition Example

Literal
A part of an expression that has a
value which can be interpreted literally

4.0 or "python"

Variable A named portion of memory that stores some value
year, x, or
last_name

Operator A symbol defining an operation or transformation =, +, *, or <

Review: Expressions
Expressions are portions of a program that have or evaluate to a value.

Basic expressions are composed of literals, variables, and operators

11

Quick: Yell it out!

Symbols:

Review: Operators & Literals

Literal

Variable

Operator

"hello_there"

=

"+"

2

12

Quick: Yell it out!

Symbols:

Review: Operators & Literals

Literal

Variable

Operators

counter_strike

/

"3"

spartan_name_117

13

f-strings are string literals that have an f prefix.

This allows us to have {} inside the string that contains an
expression. That expression will be evaluated into the string value.

x = 100
y = 4.2
name = "Mark"
script_line = f"I had a dream where my GPA was a {y}!"
script_line = f"But really it is a {y - 2}!"
script_line = f"There are {x} chickens outside..."
script_line = f"Oh, Hi there {name}."

Review: f-strings

14

L11:

What is printed?

x = 101
print("f\"{x}\"")
print(f"{x - 100}")
print(f"(x + 1) is equal to ({x} + {1})")

Lecture Activity

15

In Python, we have different 'type 's of variables!

The type of a variable determines how the value it has stored is interpreted and used.

This will become clearer as we use operators on these variables later in lecture.

Data Type Purpose Sample Values Sample Operations

int whole (integer) numbers 3, -14, 0 +, -, *, /

float numbers with fractional parts 3.0, -14.32, 0.0 +, -, *, /

str text "CIS 1100", "False" len(), indexing & slicing

Types

16

We have seen strings before, they contain a sequence of characters.

Even in our first program, we were using a string:

print("Hello World!")
my_string = "hey!"
print(my_string)

Strings

17

When using the + operator on Strings:

example = "hello" + "world"
print(example) # prints "helloworld"

Using Operators on String Types

the two strings are appended together literally.

kept in the same order, from left to right.

no spaces are inserted between them

18

+ is used as an operator to append strings together

It does not overwrite or modify any of the variables that are its operands.

Example:

x = "cis1100"
y = "com"
z = x + "." + y
print(x) # "cis1100"
print(y) # "com"
print(z) # "cis1100.com"

Reminder: The only way to change what a variable is equal to is with the = operator.

operator + with strings

19

We can also call functions on strings to preform specific operations!

Consider this example:

x = "abcdefghijklmnop"
y = x.upper()
z = "boYmeEtsWoRld".lower()
w = "hey! What's up?".upper()
print(x) # "abcdefghijklmnop"
print(y) # "ABCDEFGHIKLMNOP"
print(z) # "boymeetsworld"
print(w) # "HEY! WHAT'S UP?"

Syntax: <string>.func_name()

Important: these only apply to cased characters, not punctuation/symbols!

Calling functions "On" Strings

20

More string functions
.upper() makes a copy where all letters are uppercase

.lower() makes a copy where all letters are lowercase

.capitalize() makes a copy with its first
character capitalized and the rest lowercased.

.strip() makes a copy where all space before and after the characters are removed.

str.replace(old, new) makes a copy where
all instances of the string old are replaced by new.

a + b makes a new string value that has the value of b attached to the end of a

e.g. " hey! ".strip() becomes "hey!".

eg "aaa".replace("a", "b") becomes "bbb".

note: a and b are strings
21

A couple of beginner mistakes to make when programming are:

Let's take a look at a couple of problems!

Common Mistakes with Variables

Forgetting that (most) operators do not modify variables that are operands

improperly keeping track of values stored in variables

22

What is printed at the end of the program?

S8:

initial_string = " YOU are all ".strip()
initial_string = initial_string.lower()
corrected_string = initial_string.replace("you", "You")
corrected_string = corrected_string.replace(" ", " ")
emphasized_string = corrected_string + " AMAZING!!!"
final = emphasized_string.replace("!!!", "!")
print(final.capitalize())

Lecture Activity

23

What are the final value of all variables in this program?
C12:

neo = "the"
morpheus = "one"
matrix_code = f"{neo.upper() + morpheus.capitalize()}".replace("One", "Chosen")
morpheus = "Agents of the Matrix"
final_transformation = morpheus.replace("Agents", "Architects").lower()
neo = f"In {1999 + 24}, {matrix_code} rewrote: {final_transformation.capitalize()}"
oracle = f"{final_transformation}-{morpheus}"

Lecture Activity

24

In python, we can store numbers in variables.
However, there is a distinction between two types:

Numerical Types

int These are Integers, meaning any positive or negative value (or zero).

float These can store rational numbers and some special values

e.g. 0, -3200, 10, 299792458

e.g. 3.14, 8.3144, 1.4142, 2.718, infinity, -infinity

25

Order of operations (PEMDAS) and evaluating from left to right still applies.

If you want to enforce what happens first or a specific order, use(and).

Numerical Operators
+: addition

-: subtaction

/: divide

*: multiplication

x + y

x - y

x / y

x * y

26

Mixing Numerical Types
If you use an operator on two ints you get an int

If you use an operator on two floats, the result will be a float

if you operate on an int and a float you get a float (why?)

(except / then you get a float, why?)

the motivation for this might not be clear yet!

27

What are the resulting types of the expressions and what will be printed?

S9:

x = 3 + 0.5 * 2
print(x)

S10:

x = (2 * 8) / 3
print(x)

Lecture Activity

28

There are also a few more operators worth covering:

More Assignment Operators

+=
x = "h"
x += "i"
// x here becomes "hi"

This operator "adds" the two values together and
sets the variable on the left equal to the result.

Other variants: -=, *= and /= exist for numerical types (*= works on strings too!)

29

Lecture Activity

S10:
What does this evaluate to? (10 % 3) ** 2 // 5

Other Arithmetic Operators
** used for exponents.

// used for "integer division, rounds the result towards 0

% called "modulo" used to get the remainder of a division.

e.g. 5 squared is written as 5 ** 2

int // int evaluates to an int

3 // 2 evaluates to 1

5 % 2 evaluates to 1

9 % 3 evaluates to 0

30

x = True
y = False
print(x)

If Time: Boolean Type

31

A common way to get boolean values is through comparison.

"Hello" == "hello" evaluates to False
5 != 3 evaluates to true
"hi" == "hi" evaluates to True

More on bool & a new type None next time

Comparison

== checks if two things are equal

!= checks if two things are NOT equal

32

Reminder:
Next lecture on Monday 01/27

There is another check-in due before that lecture as well.

Office Hours and Recitation start next week

HW00 is out and due Wednesday (1/29) at midnight

Recitation attendance is counted, show up to your assigned recitation!

33

