
CIS 1100
Searching Python

Spring 2025

University of Pennsylvania

We often need to search for an item in a collection

In this module, we will learn about how to search for an element in a list.

Overview

Is this student in this recitation roster?

Is this username in our user database?

Is there any data point in our dataset that matches this description?

1

Learning Objectives

To be able to use linear search to find an element inside an sequence

To be able to use binary search to find an element inside an sequence

To be able to know when to use linear search and when to use binary search

2

(L11) Discuss with a partner and write down: what quality

or qualities of a program make it more or less "efficient"?

What Is Efficiency?

3

Note
ideas:
- runtime
- space
- power/energy
- number of lines of code
- number of variables/functions used
![alt text](image-126.png)

All code takes time to run. A simple heuristic is that a function's runtime

is proportional to the number of iterations of the loops it takes to execute.

Our Primary Concern: Runtime Efficiency

4

Let's approximate "speed" with printed snakes: . Each

iteration of the loop prints a snake, so "speed" runtime.

Recall that isupper() is a method of strings that returns True only when all

letters are uppercase. We could write our own implementation in a couple of ways...

def isupper_one(word):
 all_upper = True
 for letter in word:
 print(" ")
 if not "A" <= letter <= "Z":
 all_upper = False
 return all_upper

def isupper_two(word):
 for letter in word:
 print(" ")
 if not "A" <= letter <= "Z":
 return False
 return True

(S7): How many snakes are printed if we run isupper_one("GaRBANZO")?

(S8): How about isupper_two("GaRBANZO")?

Speedy Snakes

5

For problems that are just long-winded "and"/"or", you can often return early!

This is called boolean short-circuiting, and it's built into Python for safety and efficiency.

Early Returns

isupper() "are all letters uppercase?" "the first letter is uppercase

and the second letter is uppercase and the third letter is uppercase and...

logical and is True only if both of its arguments are True

logical and is always False if any of its arguments are False

 safe to return False as soon as any boolean in a chain of "ands" is False !

6

1. Formalize the problem of search

2. Propose a simple algorithm for searching and analyze its runtime in several cases

3. Propose a more complex algorithm for searching and analyze its runtime, too

4. Compare the algorithms and conclude which is more efficient.

Roadmap

7

Formally, given a sequence of values and a target value, we want to

determine if the target value is in the sequence, and if so, where it is located.

Problem: Search

8

Python has a built-in solution: sequence.index(target) returns the position of

target inside of the sequence , or raises a ValueError if the target is not present.

Solution: .index()

You'll just use this (or .find() for strings) most of the time

BUT!

How does it work?

index() the best solution in all cases? Are there better strategies?

(No, and there are.)

9

Formally, given a sequence of values and a target value, we want to

determine if the target value is in the sequence, and if so, where it is located.

Problem: Search

in our case, the "sequence of values" could be a list, tuple, string...

the "target value" is the value we are searching for

the location is the index of the value in the sequence, or -1 if it's not present.

10

In any problem, the feasible region is the name for

the set of possible values that might be a solution.

In our search algorithms, we repeatedly reduce the feasible region until we find the

target value, or until we determine that the target value is not present in the sequence.

Concept: The "Feasible Region"

In the context of search, the feasible region refers to the set

of indices in the sequence that might contain the target value.

A set of indices is functionally a region of the

sequence where the target value might be found.

11

(C12) Suppose you lose your keys in your home. You're at home, so you know

they're somewhere in one of these rooms! You have a bedroom, front room,

kitchen, and bathroom. Describe a procedure for searching for your keys.

Quick Analogy: Lost Keys

12

Note
Key ideas:
- once you search a room, you're better off searching a different room instead of the same one
- your keys will always be in the last place you look

CIS 1100
Linear Search Python

Spring 2025

University of Pennsylvania

Used to search for a value (the target) in an unsorted list

With each iteration, we reduce the feasible region by one element.

Linear Search

Use a loop to iterate over the values

Start at the first element and move to the next element until the target is found

Returns the position of the target if it was found in the

sequence, or -1 if the target was not found in the sequence

13

(this image is a link)

Linear Search Example

14

https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#linear-searching
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#linear-searching
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#linear-searching

def linear_search(sequence, target):
 for idx, element in enumerate(sequence):
 if element == target:
 return idx
 return -1

>>> linear_search(range(30, 300, 4), 30)
0
>>> linear_search(range(30, 300, 4), 262)
58
>>> linear_search(range(30, 300, 4), 31)
-1

Linear Search

15

def linear_search(sequence, target):
 for idx, element in enumerate(sequence):
 print(" ")
 if element == target:
 return idx
 return -1

(S9) How many snakes get printed if...

Linear Search: Thinking Critically

the target is the first element in the sequence?

the target is the 10th element in the sequence?

the target is not in the sequence?

16

How many iterations of the for loop will we need if...

Linear Search: Thinking Critically

the target is the first element in the sequence? 1

the target is the 10th element in the sequence? 10

the target is not in the sequence? len(sequence)

17

Linear search is...

These are desirable properties, but linear search is not always the most efficient.

Linear Search: Properties

Complete: we'll always get an answer

Correct: we'll always get the right answer

May require more time (~more iterations) than other searching algorithms for "average use"

18

Here's a dumb searching algorithm called Bogo Search

from random import randrange
def bogo_search(sequence, target):
 while True:
 print(" ")
 idx = randrange(len(sequence)) # picks a random index to look at
 if sequence[idx] == target:
 return idx

Not even complete: if we got unlucky, we could accidentally just look at

the same (wrong) index infinitely many times in a row and never return.

A Contrasting Point of View

19

CIS 1100
Binary Search Python

Spring 2025

University of Pennsylvania

Can we do better than linear search? Can we be...

The answer is "yes, yes, and sometimes."

Binary Search

complete?

correct?

faster?

20

Used to search for a target value in an (ascending) sorted sequence only

Binary Search

Compares the target with the value at the middle index (middle element)

Repeat on the remaining search area of the sequence until

If the middle element is the target element, then we're done!

If the target is less than the middle element, then we search for the target

in the left half of the sequence (the positions before the middle element)

If the target is greater than the middle element, then we search the target

in the right half of the sequence (the positions after the middle element)

the element is found

there is no feasible search area left

21

Quickly: True (A) or False (B)?

Taking the Pulse

M1: (2 + 4) // 2 == 3

M2: (2 + 9) // 2 == 5.5

M3: If a sorted array of numbers has the value 34.1 at

index 9 , then the value 9 could be stored at index 34 .

M4: If a sorted array of numbers has the value 34.1 at

index 9 , then the value 34 could be stored at index 6 .

22

Searching for "Dustin" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search

middle = (low + high) // 2 = 3

names[middle] is "Elliot" , which comes after "Dustin" alphabetically.

So, if "Dustin" is present, it must be between positions 0 and middle - 1 .

 shift high one to the left of middle

23

Searching for "Dustin" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search

middle = (low + high) /// 2 = 1

names[middle] is "Debbie" , which comes before "Dustin" alphabetically.

So, if "Dustin" is present, it must be between positions middle + 1 and 2 .

 shift low one to the right of middle

24

Searching for "Dustin" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low, middle, high

Binary Search

middle = (low + high) // 2 = 2

names[middle] is "Dustin" , which is the target element! So, we return middle .

25

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search: Searching

for an Element not Present

middle = (low + high) // 2 = 3

names[middle] is "Elliot" , which comes after "Drew" alphabetically.

So, if "Drew" is present, it must be between positions 0 and middle - 1 .

26

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search: Searching

for an Element not Present

middle = (low + high) // 2 = 1

names[middle] is "Debbie" , which comes before "Drew" alphabetically.

So, if "Drew" is present, it must be between positions middle + 1 and 2 .

27

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low, middle, high

Binary Search: Searching

for an Element not Present

middle = (low + high) // 2 = 2

names[middle] is "Dustin" , which comes after "Drew" alphabetically.

So, if "Drew" is present, it must be between positions 2 and middle - 1 .

28

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

high low

Binary Search: Searching

for an Element not Present

high is now less than low . The "feasible search area" is now totally empty.

So, we return -1 to indicate that the target was not found in the sequence.

29

(this image is a link)

Binary Search, Interactive

30

https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#binary-search
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#binary-search
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#binary-search

def binary_search(sequence, target):
 low_index, high_index = 0, len(sequence) - 1
 while low_index <= high_index:
 middle_index = (low_index + high_index) // 2
 if target < sequence[middle_index]: # middle too big:
 high_index = middle_index - 1 # discard right half
 elif target > sequence[middle_index]: # middle too small:
 low_index = middle_index + 1 # discard left half
 else:
 return middle_index # found it!
 return -1 # couldn't find it

Binary Search

31

Properties of Binary Search

Binary Search is complete since each iteration of the while loop shrinks our feasible search

area down to a point where we'll stop, or we return the index where we find the target.

Binary Search is correct since we return the index of the target when we find it and

we only return -1 when the element could not have been present in the sequence.

Is Binary Search any more efficient than Linear Search?

This is only guaranteed if the sequence was sorted, though!

32

CIS 1100
Comparing Linear

& Binary Search

Python

Spring 2025

University of Pennsylvania

Linear Search vs. Binary Search

Binary search is faster "on average" than linear search

Per iteration, binary search shrinks the feasible region by half

the remaining elements, linear search only by one element.

In both cases, max number of iterations needed is bounded above by

the number of iterations needed to shrink the feasible region to empty.

On average, binary search requires fewer iterations of the search loop

(when is binary search not faster then linear search?)

33

Runtime analysis: how many iterations will it take

to determine that the target is not in the sequence?

Length of the sequence Linear Search Binary Search

2 2 2

4 4 3

8 8 4

16 16 5

100 100 7

Linear Search vs. Binary Search

34

Runtime analysis: how many iterations will it take to

determine that the target is the first element of the sequence?

Length of the sequence Linear Search Binary Search

2 1 2

4 1 3

8 1 4

16 1 5

100 1 7

Linear Search vs. Binary Search

35

Linear search is...

Binary search is...

Linear Search & Binary Search

Usable when your sequence is not sorted to start with

As efficient as any search algorithm can be when you

don't know anything about the sequence ahead of time

Only usable when your sequence is sorted to start with

Significantly more efficient than linear search on average.

36

	Searching
	Overview
	Learning Objectives
	What Is Efficiency?
	Our Primary Concern: Runtime Efficiency
	Speedy Snakes
	Early Returns
	Roadmap
	Problem: Search
	Solution: .index()
	Problem: Search
	Concept: The "Feasible Region"
	Quick Analogy: Lost Keys

	Linear Search
	Linear Search
	Linear Search Example
	Linear Search
	Linear Search: Thinking Critically
	Linear Search: Thinking Critically
	Linear Search: Properties
	A Contrasting Point of View

	Binary Search
	Binary Search
	Binary Search
	Taking the Pulse
	Binary Search
	Binary Search
	Binary Search
	Binary Search: Searching for an Element not Present
	Binary Search: Searching for an Element not Present
	Binary Search: Searching for an Element not Present
	Binary Search: Searching for an Element not Present
	Binary Search, Interactive
	Binary Search
	Properties of Binary Search

	Comparing Linear & Binary Search
	Linear Search vs. Binary Search
	Linear Search vs. Binary Search
	Linear Search vs. Binary Search
	Linear Search & Binary Search

