
CIS 1100
Recursion Python

Fall 2024

University of Pennsylvania

Learning Objectives

To understand how to think recursively

To be able to write recursive functions

To be able to trace a recursive function

To be able to write recursive algorithms and functions for searching arrays

1

CIS 1100
Thinking Recursively Python

Fall 2024

University of Pennsylvania

The journey of a thousand miles starts with one mile.

And then a journey of 999 miles.

Recursive Thinking

2

A function is recursive if it invokes itself to do part of its work.

Recursion is a problem-solving approach that can be used to generate simple

solutions to certain kinds of problems that are difficult to solve by other means.

Recursion reduces a problem into one or more simpler versions of itself.

Recursive Thinking

3

An alternate to using loops for solving problems

The core of recursion is taking a big task and breaking it up into a series of related small tasks.

Recursion

Example: handing out papers for an exam

Iterative: have a TA walk down a row of students, giving each person an exam

Recursive: A student takes one exam, pass the rest down the aisle

4

We want to write a program that prints N stars on one line, but without loops.

def print_stars(N):

Here's

print_stars(N) ---> print_stars(1) + print_stars(N - 1)
print_stars(3) ---> print_stars(1) + print_stars(2)
print_stars(2) ---> print_stars(1) + print_stars(1)
print_stars(1) ---> print("*");

Breaking up a large problem

5

CIS 1100
Mechanics of Recursion Python

Fall 2024

University of Pennsylvania

Every recursive function needs at least one base case and at least one recursive part.

The base case:

The recursive part:

Anatomy of a Recursive Function

handles a simple input that can be solved without resorting to a recursive

call. Can also be thought of as the case where we "end“ our recursion.

contains one or more recursive calls to the function.

In every recursive call, the parameters must be in some

sense "closer" to the base case than those of the original call

6

Pretend that you never learned about * as an operator!

def multiply(x, y):
 """Function takes two ints x and y and returns x times y
 Inputs:
 x, the first operand
 y, the second operand
 Returns:
 x * y
 """
 if x == 1:
 return y # base case
 else:
 return y + multiply(x - 1, y) # recursive call

Anatomy of a Recursive Function

7

Note
```java
/**
 * The function takes two ints x and y and returns x * y
 * @param x the first operand
 * @param y the second operand
 * @return x * y
 */
public static int multiply(int x, int y) {
    if (x == 1) { // base case (multiplying by 1 is easy)
        return y; // 1 * y == y, so just return y.
    } else {
        return multiply(x - 1, y) + y; // recursive call!
    }

}
```


Python maintains a run-time stack on which it saves new

information in the form of an activation frame, which stores:

Whenever a new function is called (recursive or not), Python

pushes a new activation frame onto the run-time stack

Run-Time Stack and Activation Frames

function arguments

local variables (if any)

the return address of the instruction that called the function

8

The process of returning from recursive

calls and computing the partial results

is called unwinding the recursion

Tracing a

Recursive Function

9

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

Tracing a Returning Recursive Function

10

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

Tracing a Returning Recursive Function

11

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

multiply(2, 10) 2 10 10 + multiply(1, 10) pending

Tracing a Returning Recursive Function

12

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

multiply(2, 10) 2 10 10 + multiply(1, 10) pending

multiply(1, 10) 1 10 10 complete (base case triggered)

Tracing a Returning Recursive Function

13

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + multiply(2, 10) pending

multiply(2, 10) 2 10 10 + 10 20 complete

multiply(1, 10) 1 10 10 (base case triggered!) complete (base case triggered)

Tracing a Returning Recursive Function

14

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + multiply(3, 10) pending

multiply(3, 10) 3 10 10 + 20 30 complete

multiply(2, 10) 2 10 10 + 10 20 complete

multiply(1, 10) 1 10 10 (base case triggered!) complete (base case triggered)

Tracing a Returning Recursive Function

15

Tracing multiply(4, 10);

call x y return call status

multiply(4, 10) 4 10 10 + 30 40 complete

multiply(3, 10) 3 10 10 + 20 30 complete

multiply(2, 10) 2 10 10 + 10 20 complete

multiply(1, 10) 1 10 10 (base case triggered!) complete (base case triggered)

So multiply(4, 10) evaluates to 40 .

Tracing a Returning Recursive Function

16

CIS 1100
How To Write

Recursive Functions

Python

Fall 2024

University of Pennsylvania

Identify the base case(s) and solve it/them directly

Steps to Design a Recursive Algorithm

There must be at least one case (the base case),

for a small value of n, that can be solved directly

Devise a strategy to reduce the problem to smaller versions of itself while making progress

toward the base case

A problem of a given size n can be reduced to one or more

smaller versions of the same problem (recursive case(s))

Combine the solutions to the smaller problems to solve the larger problem

17

def is_palindrome(s):

Given a string, decide if it is a palindrome, that is, if it reads the same forwards and backwards.

Design a Recursive Solution to a Problem

Base case?

Recursive steps?

18

def is_palindrome(s):

Given a string, decide if it is a palindrome, that is, if it reads the same forwards and backwards.

Design a Recursive Solution to a Problem

Base case? Strings of length 0 or 1 are palindromes always! ("" and "a" , for example))

Recursive steps?

19

def is_palindrome(s):

Given a string, decide if it is a palindrome, that is, if it reads the same forwards and backwards.

Design a Recursive Solution to a Problem

Base case? Strings of length 0 or 1 are palindromes always! ("" and "a" , for example))

Recursive steps? For any string, it can only be a

palindrome if its first and last letters are the same.

If they are, then we still need to check the rest of the string

If they are not the same, then we can stop immediately.

20

def is_palindrome(s):
 if ???:
 return ???
 else:
 return ???

Design a Recursive Solution to a Problem

21

What's the condition for the base case?

def is_palindrome(s):
 if len(s) <= 1:
 return ???
 else:
 return ???

Design a Recursive Solution to a Problem

22

What do we return for a string that's empty or 1 character long?

def is_palindrome(s):
 if len(s) <= 1:
 return True
 else:
 return ???

Design a Recursive Solution to a Problem

23

How do we check if the first and last characters are the same?

def is_palindrome(s):
 if len(s) <= 1:
 return True
 else:
 first_last_match = s[0] == s[-1]
 return ???

Design a Recursive Solution to a Problem

24

How do we use this boolean value?

def is_palindrome(s):
 if len(s) <= 1:
 return True
 else:
 first_last_match = s[0] == s[-1]
 rest = s[1:-1]
 return first_last_match and is_palindrome(rest)

Design a Recursive Solution to a Problem

25

Like writing loops, there's a formula to writing recursive solutions to problems.

1. Identify the kinds of inputs where the solution is very easy to solve.

2. Identify the kinds of inputs where the solution is not easy to solve,

but can be broken down into smaller versions of the same problem.

3. Figure out how to combine the smaller versions of the problem to solve the larger problem.

Thinking Formulaically

26

Recall that we want to make the problem smaller: how to do this with lists?

Recursion & Lists

Use an index (or indices) to specify the portion of the list that you're recursing over?

Make copies of smaller ranges of the list until the problem becomes trivial?

Good for languages where it's not "easy" to slice lists

Technically more memory-efficient

Easy in Python, similar to strategy in other recursive-minded languages

27

def find_largest(lst):

Given a list of ints, return the largest int in the list at or after the current index.

Recursion & Lists

Base case?

Recursive steps?

Empty lists have no largest element, so return float('-inf')

If a list consists of just one element, that element is the biggest!

Return whichever is greater: the first element, or the greatest element in the rest of the list.

28

def find_largest(lst):
 if ???:
 return ???
 else:
 return ???

Recursion & Lists

29

def find_largest(lst):
 if len(lst) == 0:
 return float('-inf')
 else:
 return ???

Recursion & Lists

30

def find_largest(lst):
 if len(lst) == 0:
 return float('-inf')
 else:
 head = lst[0]
 biggest_of_rest = find_largest(lst[1:])
 if head > biggest_of_rest:
 return head
 else:
 return biggest_of_rest

Recursion & Lists

31

CIS 1100
Searching & Recursion Python

Fall 2024

University of Pennsylvania

Searching a list can be accomplished using recursion; simplest way to search is a linear search

Recursive Search

Examine one element at a time starting with the first element and ending with the last

Return the index of the list where the element was found, or -1 if absent

32

Recursive Search

Base cases?

Recursive steps?

Empty list, target can not be found; result is -1

First element of the list being searched is target; result is the index of first element

The recursive step searches the rest of the list, excluding the first element

33

(Recall that the feasible search area refers to the portion

of the list that might still contain our target element...)

Algorithm for Recursive Linear Search

if the feasible search area is empty, the result is -1

else if the first feasible element matches the

target, the result is the position of the first element

else, search the list excluding the first element and return the result

34

Since we're looking to return an index, we might not want to mess

with the list and instead recursively modify the index instead.

def linear_search(lst, target, index):
 if index >= len(lst):
 return -1
 elif lst[index] == target:
 return index
 else:
 return linear_search(lst, target, index + 1)

(To find an element target in lst , call linear_search(lst, target, 0))

Recursive Linear Search

35

A binary search can be performed only on an list that has been

sorted. Remember: rather than looking at the first element, a binary

search compares the middle element for a match with the target

Recursive Binary Search Algorithm

Base cases?

Recursive steps?

The list is empty

Element being examined matches the target

If the middle element does not match the target, a binary search

excludes the half of the list within which the target cannot be found

36

Design of a Binary Search Algorithm

if the list is empty, return –1 as the search result

else if the middle element matches the target, return

the subscript of the middle element as the result

else if the target is less than the middle element, recursively search

the list elements before the middle element and return the result

else recursively search the list elements after the middle element and return the result

37

def binary_search(lst, target, left, right):
 if left > right or len(lst) == 0:
 return -1
 middle = (left + right) // 2
 if lst[middle] == target:
 return middle
 elif target < lst[middle]:
 return binary_search(lst, target, left, middle - 1)
 else:
 return binary_search(lst, target, middle + 1, right)

(To find an element target in lst , call

binary_search(lst, target, 0, len(lst)))

Recursive Binary Search

38

Kind of annoying to have to remember how to "set up"

the binary_search call each time you want to use it!

def binary_search(lst, target):
 return binary_search_helper(lst, target, 0, len(lst))

Recursive Helper Functions

rename the previous function to e.g. binary_search_helper

write another function with the name binary_search
that calls the other but sets up the indices for you:

39

	Recursion
	Learning Objectives

	Thinking Recursively
	Recursive Thinking
	Recursive Thinking
	Recursion
	Breaking up a large problem

	Mechanics of Recursion
	Anatomy of a Recursive Function
	Anatomy of a Recursive Function
	Run-Time Stack and Activation Frames
	Tracing a Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function
	Tracing a Returning Recursive Function

	How To Write Recursive Functions
	Steps to Design a Recursive Algorithm
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Design a Recursive Solution to a Problem
	Thinking Formulaically
	Recursion & Lists
	Recursion & Lists
	Recursion & Lists
	Recursion & Lists
	Recursion & Lists

	Searching & Recursion
	Recursive Search
	Recursive Search
	Algorithm for Recursive Linear Search
	Recursive Linear Search
	Recursive Binary Search Algorithm
	Design of a Binary Search Algorithm
	Recursive Binary Search
	Recursive Helper Functions

