
CIS 1100
Recommending Python

Spring 2025

University of Pennsylvania

It’s too nice a day to read

a novel set in England.

We’re within inches of the perfect

distance from the sun,

the sky is blueberries and cream,

and the wind is as warm as air from a tire.

The Charm of 5:30

by David Berman

1

1. TA Applications due tonight at 11:59pm

i. no late days :)

2. HW09: What to Watch? Part 1 Released now, due April 23rd

i. last opportunity to use late tokens if you want; NO LATE TOKENS ON PART 2

ii. Part 2 comes out April 24th, due April 30th

iii. These assignments cannot be dropped

3. Monday's check-in involves a reading, not a video

i. Should still be short, ~10 minutes

ii. Related to W2W?P2

Announcements

2

TA Apps

If you're

interested, apply!

Application

is short

Don't

prematurely

disqualify

yourself

3

Part 1: Scraping

Part 2: Recommending

Last sem, we gave two weeks to do all of it. Now, one week for each part.

HW9: What to Watch

Previous findings: overall challenge "not that bad," but doing it all at once was miserable.

Uses nearly everything from the course:

Loops & conditionals & complex control structures

Calling functions

Sets & lists & dictionaries

Objects

Scraping

4

In traditional Computer Science, we talk about algorithms...

But in "real life," we talk about "The Algorithm."

HW09: The Big Idea

finding the shortest path from A to B

calculating the edit distance between two strings

scheduling a shared resource to have minimal downtime

5

6

7

Write a program that allows you to find people's movie reviews on

the internet. Then, after collecting them, use that information to make

informed recommendations about what other people might like to watch!

1. Gives you something to do that feels substantial

& uses a wide range of material from the course

2. Help you become better digital citizens, especially if this is your only CIS course!

Assignment Goals

8

Content from last few lectures tells you how.

Quick walkthrough of the sites you'll be scraping. ATTENZIONE !

The Scraping

Information spread across multiple pages—figure out the URLs!

Don't know ahead of time how many pages there are.

The information you need is in tables, but needs some cleaning.

9

After scraping, we have movie info and user ratings.

We want a way of making a recommendation for a user.

1. Turn each user's ratings into their genre preferences by taking

the average score that they assign to movies of each genre.

2. Determine a way of comparing one user's

preferences to another. (We'll use cosine similarity.)

3. Compare the preferences of the user seeking a recommendation to all

other users' preferences in order to find the most similar other user.

4. Suggest movies that the most similar other user likes a lot.

Recommending

10

If I like movie X, can you

find me some other

movie Y that's similar?

First Idea: Item-

Based Filtering

11

In (L11), write down a favorite movie that you like. Then, try to come up

with three essential aspects of what you like about it. (2 minutes, silently)

Activity

12

Turn to a partner and discuss for 3 minutes:

Activity

First, share the properties that you describe your

movie without sharing the name of the movie.

Decide if that sounds interesting to you or not.

Reveal the name of the movie

If you've heard of it or seen it, did their description seem very useful?

13

Item-Based Filtering requires that we have a way of modelling the "essential

properties" of movies in order to find the most similar other movies.

Not really easy to do in practice!

Item-Based Filtering

14

Easier to make recommendations based

on what other people like rather than some

essential properties about what you like.

User-Based

Recommendations

15

16

User-Based Filtering allows us to make recommendations based on what similar users liked.

Can be a bit easier since we don't have to worry as much about what makes each movie "itself".

User-Based Recommendations

17

Genre can be a useful proxy for

more detailed properties of a movie.

We'll model a user's overall preferences by

calculating the average scores they assign

to movies tagged with a particular genre.

Modeling User

Reviews as

Preferences

18

movie_info = {
 1: ("Harry's Adventure", ("Comedy", "Adventure")),
 2: ("Travis' Tragedy", ("Drama", "IMAX", "Comedy")),
}

Maps movie IDs to Sadia's ratings of those movies.
sadias_ratings = {1: 3, 2: 4}

No need to write code to do these, just mental decoding and arithmetic.

(S7) What rating does Sadia give to Travis' Tragedy?

(S8) What is the average rating that Sadia awards to thriller movies?

(S9) What is the average rating that Sadia awards to comedy movies?

(S10) What is the average rating that Sadia awards to drama movies?

Activity: Ratings to Preferences

19

A MovieRecommender stores an attribute called

self.movie_info . It will look something like this.

{1210: ('Star Wars: Episode VI - Return of the Jedi',
 ('Action', 'Adventure', 'Sci-Fi')),
 2028: ('Saving Private Ryan', ('Action', 'Drama', 'War')),
 1307: ('When Harry Met Sally...', ('Comedy', 'Romance')),
 5418: ('Bourne Identity, The', ('Action', 'Mystery', 'Thriller')),
 56367: ('Juno', ('Comedy', 'Drama', 'Romance')),
 3751: ('Chicken Run', ('Animation', 'Children', 'Comedy'))}

(L13) If self.movie_info stores a dictionary with this shape,

write an expression that can look up the title of a movie with ID 3943 .

(C12) Finish this function, which prints out each genre associated with the input movie_id

def print_all_genres(self, movie_id: int):

Movie Recommender

20

A MovieRecommender stores an attribute called self.all_user_ratings .

It will look something like this. (Actually much longer.)

{514: {2716: 5.0, 780: 2.0},
 279: {780: 4.0, 300: 2.5, 1010: 0.5}}

(L13) What do the "outer" keys (514, 279) represent? What do the "inner" keys

(2716 or 300) represent? What do the float values (5.0, 4.0) represent?

Movie Recommender

21

Note

HW9: What to Watch

Part 1: Scraping ✅
Part 2: Recommending

Reminders:
- Due Dec 9 at 11:59pm
- No late days accepted
- Autograder coming really soon, I promise
 - we haven't forgotten
 - you can check your correctness on the first few parts using examples in the write-up
 - the autograder tests take *forever* to write because they involve a lot of actual calculations and I really really don't want to have the tests tell you the wrong things so I'm doing a lot of math

Movie Recommender

(C12) Finish this method belonging to the `MovieRecommender` class. Remember the attibutes!

```python
self.all_user_ratings: dict[int, dict[int, float]]
self.movie_info: dict[int, tuple[str, tuple]]
```



```python
def count_movies_by_genre(self, user_id: int) -> dict[str, int]:
    """Return a dictionary mapping genres to the number of movies that
    the input user has rated from that genre."""

    counter = {}
    
    ...


    return counter
```

Cosine Similarity

Representing something complex as a bunch of numbers? ✅
Figuring out which bunches of numbers are more or less similar? 😕

Cosine similarity calculates this for us!
- `1` :arrow_right: identical in direction
- `0` :arrow_right: perpendicular in direction
- `-1` :arrow_right: opposite in direction
 - (not actually possible in our case since all numbers are positive)

Cosine Similarity & Vectors

As in the reading, *vectors* are traditionally represented as lists/arrays. But we're using dicts...

- Genres don't have unique numeric identifiers, so we would need a way of encoding genres into the list positions.
 - i.e. in `[4.0, 5.0, 0.0, 3.0]`, which genre gets the `5.0` reading??
- **Sparsity**: There are 19 genres in the dataset, but most people don't rate all of them.
 - `{"Comedy" : 4.0, "Action" : 3.0}` might become the following instead if we needed a list of 19 elements:
    ```python
    [4.0, 3.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    ```

Calculations

Cosine Similarity is calculated like so:

$$\frac{\mathbf{A}\cdot\mathbf{B}}{||\mathbf{A}||\times ||\mathbf{B}||}$$

"the ratio of the dot product to the product of the magnitudes"

That's hard, but:
- the top term (dot product) is the sum of elementwise products of vectors A and B
- the magnitude of a vector is the square root of the sum of the squares of the elements.

Dot Product

If `A = {"Comedy" : 4.0, "Action" : 3.0}` and `B = {"Action" : 5.0, "Drama" : 2.5}`, then:

$$A \cdot B = 4\times0 + 3\times5 + 0\times2.5 = 15$$

(S7) Calculate the dot product between two vectors `A = {"Comedy" : 4.0, "Action" : 4.0}` and `B = {"Action" : 5.0, "Comedy" : 5.0}`

(C14) Here's a function to calculate the dot product between two *lists* (assuming same length). How would we convert this to work when our vectors are *dicts*?
```python
def dot(a: list[float], b: list[float]) -> float:
    total = 0
    for i in range(len(a)):
        total += a[i] * b[i]
    return total
```

Magnitude

If `A = {"Comedy" : 4.0, "Action" : 3.0}` then the magnitude of `A` is:

$$||A|| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

(S8) Calculate the magnitude of `A = {"Comedy" : 4.0, "Action" : 4.0}`
(S9) Calculate the magnitude of `B = {"Action" : 5.0, "Comedy" : 5.0}`

(C16) Here's a function to calculate the magnitude of a vector as a list of floats. How would we convert this to work when our vectors are *dicts*?
```python
import math
def mag(a : list[float]) -> float:
    squared = map(lambda x : x * x, a)
    squared_sum = sum(squared)
    return math.sqrt(squared_sum)
```

Cosine Similarity Wrapped

(S10) Combine S7, S8, S9 to calculate the cosine similarity between:
- `A = {"Comedy" : 4.0, "Action" : 4.0}` and
- `B = {"Action" : 5.0, "Comedy" : 5.0}`

(L11) Reflect: what is the meaning of this result?

	Recommending
	The Charm of 5:30 by David Berman
	Announcements
	TA Apps
	HW9: What to Watch
	HW09: The Big Idea
	Assignment Goals
	The Scraping
	Recommending
	First Idea: Item-Based Filtering
	Activity
	Activity
	Item-Based Filtering
	User-Based Recommendations
	User-Based Recommendations
	Modeling User Reviews as Preferences
	Activity: Ratings to Preferences
	Movie Recommender
	Movie Recommender

