
CIS 1100
Nested Data Python

Fall 2024
University of Pennsylvania

JSON:

XML:

JSON & XML

JavaScript Object Notation

It's basically just Python dictionaries that get printed out. Convenient!

Use the json library to read it.

Extensible Markup Language

Sort of complicated tree structure of elements

Use the BeautifulSoup library to read it via BeautifulSoup(file, 'xml')

1

Any Questions?

2

[
 {"name" : "CIS1100",
 "section" : 1,
 "days" : ["M", "W", "F"],
 "time" : "12:00pm",
 "instructors" : [
 {"name" : "Harry", "dept" : "CIS", "started" : 2020},
 {"name" : "Jessica", "dept" : "CIS", "started" : 2022}
]
 },
 {"name" : "CIS1100",
 "section" : 2,
 "days" : ["M", "W", "F"],
 "time" : "1:45pm",
 "instructors" : [
 {"name" : "Harry", "dept" : "CIS", "started" : 2020},
 {"name" : "Travis", "dept" : "CIS", "started" : 2022}
]
 }
]

(S7) How many courses are represented? If we parse this JSON, using json.load into
a variable named courses_json, can you write an expression that produces that value?

JSON

3

[
 {"name" : "CIS1100",
 "section" : 1,
 "days" : ["M", "W", "F"],
 "time" : "12:00pm",
 "instructors" : [
 {"name" : "Harry", "dept" : "CIS", "started" : 2020},
 {"name" : "Jessica", "dept" : "CIS", "started" : 2022}
]
 },
 {"name" : "CIS1100",
 "section" : 2,
 "days" : ["M", "W", "F"],
 "time" : "1:45pm",
 "instructors" : [
 {"name" : "Harry", "dept" : "CIS", "started" : 2020},
 {"name" : "Travis", "dept" : "CIS", "started" : 2022}
]
 }
]

(S8) What time does CIS 1100 Section 1 meet? If we parse this
JSON, using json.load into a variable named courses_json,
can you write an expression that produces that value?

JSON

4

[
 {"name" : "CIS1100",
 "section" : 1,
 "days" : ["M", "W", "F"],
 "time" : "12:00pm",
 "instructors" : [
 {"name" : "Harry", "dept" : "CIS", "started" : 2020},
 {"name" : "Jessica", "dept" : "CIS", "started" : 2022}
]
 },
 {"name" : "CIS1100",
 "section" : 2,
 "days" : ["M", "W", "F"],
 "time" : "1:45pm",
 "instructors" : [
 {"name" : "Harry", "dept" : "CIS", "started" : 2020},
 {"name" : "Travis", "dept" : "CIS", "started" : 2022}
]
 }
]

(L11) What keys do the upper level dictionaries have?
What keys do the lower level dictionaries have?

Describing the Structure

5

(C12) Finish this snippet so that it prints out a set containing every instructor's name.

json_file_of_courses = open("courses.json", "r")
courses_json = json.loads(json_file_of_courses) # dict representing prev. JSON

Complete the Program

Don't assume you know how many courses there are

Don't assume you know how many instructors each course has

6

<fruits>
 <berries>
 <fruit color="red">strawberry</fruit>
 <fruit color="blue">blueberry</fruit>
 </berries>
 <stonefruit>
 <fruit color="purple">plum</fruit>
 <fruit color="orange">peach</fruit>
 </stonefruit>
</fruits>

(S7) How many elements? What are the different
tags? How many elements have attributes?

Some XML Terminology
Elements are the entities being
represented in the XML tree,
e.g. an inventory or a price.

Tags are the names that we give to the
elements, e.g. <inventory> or <price>

Attributes are properties that individual
elements can have, stored in the tags

If the pop element is specifically
a Pepsi, we could have its tag
be <pop brand="Pepsi">.

7

<fruits>
 <berries>
 <fruit color="red">strawberry</fruit>
 <fruit color="blue">blueberry</fruit>
 </berries>
 <stonefruit>
 <fruit color="purple">plum</fruit>
 <fruit color="orange">peach</fruit>
 </stonefruit>
</fruits>

(S8) Which element is the root?
Which elements have no children?

Some Tree Terminology
The tree is the collection of
elements being represented and
the connections between them

The root is the element of the tree that
has no ancestors (the initial element).

An ancestor is an element
that contains another element.

A descendant is an element that
is contained by another element.

A parent is a direct ancestor.

A child is a direct descendant.

8

Parsing XML:

from bs4 import BeautifulSoup
file = open("your_file.xml", "r")
soup = BeautifulSoup(file, "xml") # Second param tells BSoup how to parse: "xml".

This creates a BeautifulSoup object that we can navigate and parse through! You can
think of soup as the entire tree structure of the xml document.

print(soup) # Printing soup will print the entire tree structure to the terminal.

However, if you want a more nicely formatted tree, you can do the following:

print(soup.prettify())

This will make sure siblings are printed with the same amount of indentation.

Parsing & Traversing XML

9

print(soup)

<fruits>
<berries>
<fruit color="red">strawberry</fruit>
<fruit color="blue">blueberry</fruit>
</berries>
<stonefruit>
<fruit color="purple">plum</fruit>
<fruit color="orange">peach</fruit>
</stonefruit>
</fruits>

print(soup.prettify())

<fruits>
 <berries>
 <fruit color="red">strawberry</fruit>
 <fruit color="blue">blueberry</fruit>
 </berries>
 <stonefruit>
 <fruit color="purple">plum</fruit>
 <fruit color="orange">peach</fruit>
 </stonefruit>
</fruits>

Using .prettify()

10

Accessing the children of an element:

soup = BeautifulSoup(file, "xml")
Returns a list containing all the children a given element
soup.find_all(recursive = False)

Returns a singular object, the first child of the element
soup.find(recursive = False)

Equivalently, you can use .contents which returns a list of all the children of an elem.

soup = BeautifulSoup(file, "xml")
This example grabs the first element in the list `.contents` returns.
root = soup.contents[0]

Parsing & Traversing XML

11

from bs4 import BeautifulSoup

xml_file = open("fruits.xml", "r")

soup = BeautifulSoup(xml_file, "xml")
root = soup.contents[0]
element_found = soup.find("stonefruit")
print(element_found)

<!-- "fruits.xml" -->
<fruits>
 <berries>
 <fruit color="red">strawberry</fruit>
 <fruit color="blue">blueberry</fruit>
 </berries>
 <stonefruit>
 <fruit color="purple">plum</fruit>
 <fruit color="orange">peach</fruit>
 </stonefruit>
</fruits>

(L11) Instead of using soup.find("stonefruit") to find a stonefruit element, we'll
use soup.find("stonefruit", recursive = False).

What will be printed? Why?

Lecture Activitiy: recursive = false

12

Let's go ahead and take a look at this small xml document that contains just one
element and one tag.

<fruit color="blue">blueberry</fruit>

small_file = open("small_fruit.xml", "r")
soup = BeautifulSoup(small_file, "xml")
blueberry = soup.fruit
print(f"{blueberry.name}, {blueberry.attrs}, {blueberry.string}")

L13: Talk to your neighbor and discuss: what are the .name, .attrs, .string of this
element? What should be printed?

Lecture Activity, Tags, Names, Strings

13

from bs4 import BeautifulSoup

xml_file = "fruits.xml"
xml_handler = open(xml_file, "r")

soup = BeautifulSoup(xml_handler, "xml")

for child in soup.find_all(recursive = False):
 print(child.name, child.attrs, child.string)

<!-- "fruits.xml" -->
<fruits>
 <berries>
 <fruit color="red">strawberry</fruit>
 <fruit color="blue">blueberry</fruit>
 </berries>
 <stonefruit>
 <fruit color="purple">plum</fruit>
 <fruit color="orange">peach</fruit>
 </stonefruit>
</fruits>

(S9) Take a look at the code on the left hand side. What will be printed?

Lecture Activity: Tags, Names, Strings?

14

(M1) Which of these lines return all the fruit elements of a given file, fruits.xml, that
has the same structure as before. Fill in all that are correct.

from bs4 import BeautifulSoup
file = open("fruits.xml")
soup = BeautifulSoup(file, "xml")
...

Grab all the fruit

A) print(soup.find_all("fruits"))

B) print(soup.find_all("fruit", recursive = False))

C) print(soup.find("fruit"))

D) print(root.find_all("fruit"))

15

(C12) Finish the snippet to print out just the names of all the fruits inside of a given file
fruits.xml that has the same structure as before. Don't assume that the file has the
same number of fruits & categories. You can assume that the structure is the same.

from bs4 import BeautifulSoup
file = open("fruits.xml")
soup = BeautifulSoup(file, "xml")

...

Finish the Snippet

16

(L15) Describe the structure of the Library XML (Do you remember where this
is from?) What is the root element? What elements do the root element hold?

<library>
 <book>
 <title>
 Trust
 </title>
 <author>
 Hernan Diaz
 </author>
 <year>
 2022.0
 </year>
 <pages>
 402.0
 </pages>
 <rating>
 3.82
 </rating>
 </book>
 <!-- More books here -->
</library>

Return of the Books

17

(C14) Finish the snippet to print out the total number of pages harry has
read based on all the books in his Library, books.xml. that has the same
structure as seen in the previous slide. Don't assume that there are always
the same number of books. You can assume that the structure is the same.

from bs4 import BeautifulSoup
file = open("books.xml")
soup = BeautifulSoup(file, "xml")

...

Finish the Snippet

18

