
CIS 1100
Objects (Making

them and FFF)!

Python

Spring 2025

University of Pennsylvania

Note
Creating Objects
 - Data Class: review
 - fields
 - lists - dicts - set - tuple type notation
 - (C??) Write a dataclass that has four fields:
 - Circle
 - float width
 - float center_x
 - float center_y
 - tuple(int, int, int) color

 - classes:
 - self
 - __init__
 - attributes
 - circle example, randomly generate the colors
 - (L11): Instead of writing __init__ could we have made this a dataclass and get the same behaviour?
 why or why not.

 - What are methods?
 - (C??) Write a method that does blah
 - contains_point(int x, int y)

Demo FFF

 - ball
 - bouncing ball

 - TODO: in future maybe see if mouse can be incorporated in some ways
 - initially thought to make thinngs bounce off of each other, but that is already extra credit

You can ask us about anything at all durinng class when we are walking around.

Even if it is not about the current activity, feel free to ask. Worst case we say "Ask us later/after

class"

Reminder: Questions During Class

Can ask about things covered 20 minutes earlier in the lecture

Can ask questions about previous topics from previous lectures

Homework questions are usually longer to answer,

will probably tell you to talk about it after class

1

Note:

Demo: Furious Flying Fish

Target health does not change till after fish resets

Fish does not reset when going above the frame

Can drag the window for better targeting

Note the direction of the velocity line

2

So far we have talked about data classes, which make

a simple (and convenient) way for us to define classes.

Dataclass mostly just creates the __init__(self) function (constructor).

When we create an instance of a class like this, it is calling the __init__ function
my_ball = Ball(0.5, 0.25, 0.1, (10, 25, 216))

We can also define classes ourselves by defining our own __init__(self) function.

Classes

3

We can write our class Ball again:

class Ball:
 def __init__(self, radius, center_x, center_y, color):
 self.radius = radius
 self.center_x = center_x
 self.center_y = center_y
 self.color = color

Here we just create attributes of the same name inside

of self (self beinng the object that we are initializing).

Writing our own __init__

4

What if we slightly modify our class Ball to randomly generate the colors?

class Ball:
 def __init__(self, radius, center_x, center_y):
 self.radius = radius
 self.center_x = center_x
 self.center_y = center_y

 red = random.randint(0, 255)
 green = random.randint(0, 255)
 blue = random.randint(0, 255)
 self.color = (red, green, blue)

(L11) If we wanted to preserve the random number generation

in the constructor, could this be written as a dataclass?

Why or why not?

Writing our own __init__

5

Classes can contain more than just attributes, they can also contain methods.

Here we have the Square class defined with the method draw
Each method is "called on" an instance of the class and takes in self as the first input

class Square:

 def __init__(self, half_length, center_x, center_y):
 self.half_length = half_length
 self.center_x = center_x
 self.center_y = center_y

 red = random.randint(0, 255)
 green = random.randint(0, 255)
 blue = random.randint(0, 255)
 self.color = (red, green, blue)

 def draw(self):
 penndraw.set_pen_color(self.color) # note how we use self to refer to attributes
 penndraw.filled_square(self.center_x, self.center_y, self.half_length)

Review: Methods

6

Methods are functions that

belong to an object, so they are

called (mostly) like any function

my_square = Square(0.5, 0.5, 0.2)
my_square.draw()

Review: Using

Methods

Call by name and pass in

arguments within parentheses

Make sure to call the method

on the object that you want

to perform that behavior!

7

You might have several instances

of a class in your program.

left_square = Square(0.1, 0.2, 0.1)
right_square = Square(0.9, 0.2, 0.1)
left_square.move_by(0, 0.5)
left_square.draw()
right_square.draw()

Review: Methods

A method called on an object

should modify/use just that object.

Other objects will be unchanged

by another object's method call.

8

Write the method contains_point for the Square class that checks to see if a point is

contained within the square.

Returns True if the point is in the square, or False if it is not in the square.

(C14)

def contains_point(self, other_x, other_y):
 # TODO: probably use half_length, center_x and center_y

Practice: Contains Point

9

Note
def contains_point(self, other_x, other_y):
 within_x = self.center_x - self.half_length <= other_x <= self.center_x + self.half_length
 within_y = self.center_y - self.half_length <= other_y <= self.center_y + self.half_length

 return within_x and within_y

Ingredients:

Bouncing Ball Simulation

ball.py , a class that defines how a 2D ball moves & bounces on a screen

bouncing_balls.py :

contains a main method so that the simulation is runnable

creates an list[Ball] in which to store the objects to be simulated

defines a "physics" (animation) loop

10

To simulate an object's motion in 2D space over time, we need to keep track of its:

A Bit of Physics

position ()

velocity/speed ()

acceleration ()

where the object is right now

how much the object should move from where it

is right now to where it will be next time we look

how much the object's velocity should change from

what it is right now to what it will be next time we look

we'll hold acceleration constant

11

Since our simulation is run using a loop, we do our calculations in discrete steps.

A Bit of Physics

We denote the step number using superscripts, so means "x position at step "

We'll assume a constant unit timestep, meaning that we don't

have to account for the length of the timestep in our equations

(ignore this point if the details of physical simulations are not interesting to you)

12

Equation Meaning Code

x position in the next iteration is equal to

the x position now plus the x speed now

px =

px + vx

y position in the next iteration is equal to

the y position now plus the y speed now

py =

py + vy

x speed in the next iteration is equal to

the x speed now plus the x acceleration

vx =

vx + ax

y speed in the next iteration is equal to

the y speed now plus the y acceleration

vy =

vy + ay

A Bit of Physics

13

What behaviors does a Ball object need to exhibit as part of a simple physics simulation?

Methods:

def draw(self) , def update(self)

Implementing ball.py

Needs to be drawable so that we can see the simulation

Needs to move & bounce pursuant to the previous equations

14

What properties does a Ball object need to store in order to perform these operations?

Implementing ball.py

position, x and y

velocity, x and y

acceleration, x and y

radius

we'll ignore x acceleration, and y acceleration is just gravity

used for drawing

used for deciding when to bounce

15

The simulator will be responsible for initializing and

keeping track of all of the balls in the simulation.

The Simulator

How will we store all of the objects being simulated?

How will we draw each of the objects being simulated?

How will we get each of the objects to move and bounce?

Create an list[Ball]

Iterate through the list and call the draw() method on each of the Ball objects.

Iterate through the list and call the update() method on each of the Ball objects

16

import penndraw
import ball

def main():
 N = 40
 all_balls = []

 for _ in range(N):
 all_balls.append(ball.Ball())

 penndraw.set_canvas_size(600, 600)

 while True:
 penndraw.clear()
 for current_ball in all_balls:
 current_ball.draw()
 current_ball.update()
 penndraw.advance()

 penndraw.run()

The Simulator

17

import random
import penndraw

class Ball:
 def __init__(self):
 self.px = random.random()
 self.py = random.random()
 self.vx = -0.005 + (random.random() * 0.01) # [-0.005, 0.005]
 self.vy = -0.005 + (random.random() * 0.01)
 self.gravity = -0.0001
 self.radius = 0.02 + random.random() * 0.04 # [0.02, 0.06]

 def draw(self):
 penndraw.filled_circle(self.px, self.py, self.radius)

 def update(self):
 self.px = self.px + self.vx
 self.py = self.py + self.vy
 self.vy = self.vy + self.gravity

A First Pass at the "Bouncing" Ball

18

Currently, the balls just drop off the sides or bottom

of the screen. How can we get them to bounce?

Problem: No Bouncing!

Check if the ball has gone past the left, right, or bottom of the screen

Simulate a bounce by inverting the velocity for the next update step

19

On the left, we have a sketch

of the canvas with two balls.

(L13)

A Bounce

Which one should "bounce"?

How can you formalize what it

means for a ball to bounce off

of the bottom of the screen?

20

A ball should bounce off the bottom of the screen when, at time step :

Checking a Bounce

The ball is traveling downwards ()

The bottom of the ball is at or below the bottom of the screen ()

21

What happens when an object bounces off of a surface?

The Bounce:

Modeling a Bounce

The object should change direction

The object should lose a bit of momentum

22

def update(self):
 self.px = self.px + self.vx
 self.py = self.py + self.vy
 self.vy = self.vy + self.gravity

 if (self.vy < 0 and self.py - self.radius <= 0):
 self.vy = -0.9 * self.vy

A Better update()

23

What if we want to make the balls bounce off of the walls?

A ball should bounce off the side of the screen when, at time step :

What can we add to the update method to support bouncing off of the walls? (C16)

The Bounce:

Collision Practice:

The ball is traveling in the direction of the wall

The bottom of the ball is at or past the wall

 for the left wall

 for the right wall

 for the left wall

 for the right wall

24

def update(self):
 self.px = self.px + self.vx
 self.py = self.py + self.vy
 self.vy = self.vy + self.gravity

 if (self.vy < 0 and self.py - self.radius <= 0):
 self.vy = -0.9 * self.vy

 if ((self.vx < 0 and self.px - self.radius <= 0) or
 (self.vx > 0 and self.px + self.radius >= 1)):

 self.vx = -0.9 * self.vx

A Best update()

25

Next time: Exam!

Monday, March 3 in class

Please arrive a bit early if you can—no more than 15 minutes though

Exam review session on Sunday March 2 from 2:30-4:30 in Towne 100

26

	Objects (Making them and FFF)!
	Reminder: Questions During Class
	Demo: Furious Flying Fish
	Classes
	Writing our own __init__
	Writing our own __init__
	Review: Methods
	Review: Using Methods
	Review: Methods
	Practice: Contains Point
	Bouncing Ball Simulation
	A Bit of Physics
	A Bit of Physics
	A Bit of Physics
	Implementing ball.py
	Implementing ball.py
	The Simulator
	The Simulator
	A First Pass at the "Bouncing" Ball
	Problem: No Bouncing!
	A Bounce
	Checking a Bounce
	Modeling a Bounce
	A Better update()
	Collision Practice:
	A Best update()
	Next time: Exam!

