
CIS 1100
Loops, Command Line Args

& File Reading! (Lecture)

Python

Spring 2025

University of Pennsylvania

Note
Any questions before we start?

good reminder:
- important part of practice is repitition
- yes you have probably seen this content again, and sequences will be covered again in a future lecture, but repetition can be pretty helpful
- Also, yes you can solve some of these by typing the code into codio hitting run and seeing what happens, try to solve it first

You also are not expected to code everything I say and follow along exactly in lecture

quick for loop refresher
 - Loop example with a string
 - loop example with a range(), what does it print (S7)
 - other loop with a list, what does it print? (S8)

 - if statement in loop (S9)
 - what does this array look like?

enumerate
 some prog that uses it, exmaple
 find index of largest value in the array (L11)

this penndraw is to make a gradient
write code that uses a for loop to make the gradient (C12)

command line args
print all command line args, each arg on a new line

When we run this program, what are the argv values? (S10)

how to open a file

readline()
strip() probably want to strip the each line you get from readline()

split()

file with layout:

```
this file has 3 lines after this
1
2
3
```
how can we read the file successfully and print it properly?
test file reading, trim and split

Next time:
nested for loop
 list of strings

for _ in <whatever>
 ignoring the item

list comprehension

basic letter inventory for caesar!!!!

We can use for to go over each item in a sequence:

for character in "Hello!":
 print(character)

The loop will:

For Loops

Run's the code in the loop once for each item in the sequence

The first time we run the "body" (code in the loop), our loop variable

(character in this example) will be the first item of the sequence

after we finish the body once, we repeat it for the next item in the

sequence. Keep going until there are no more items in the sequence

1

This can be used to repeat code!

Instead of :

print("Hello!!!!")
print("Hello!!!!")
print("Hello!!!!")
...
print("Hello!!!!")

We can do something better:

for i in range(0, 10):
 print("Hello!!!!")
 # note how we aren't required to use i

Review: For Loops

2

FIGURE THESE OUT BY READING THE CODE, DON'T JUST RUN IT

Consider the following loop, what is the final value of nums? (S7)

nums = []
for i in range(0, 4):
 nums.append(i * len(nums))

What is the value of skills after this code is run? (S8)

skills = [18, 88, 20, 82, 91, 78, 15]
for i in range(len(skills) - 1):
 if skills[i] >= 20:
 skills[i] = skills[i] + 7
 else:
 skills[i] += 2

For your consideration: what are the two different ways we're modifying lists here?

For Loop Practice

3

We can use enumerate() to get the indices and items of the sequence paired together:

nums = [3, 2, 5]
for index, item in enumerate(nums):
 print(f"Index {i}: {item}")

prints:

Index 0: 3
Index 1: 2
Index 2: 5

Each iteration of the loop gives us two values to work with, so we choose two variable names.

Review: For Loops w/ enumerate()

4

We want to write some code to find the index of the

longest string in a list. Fill in the loop body. (C12)

strings = ["My", "Anti", "Aircraft", "Friend"]

index = 0
longest_str = strings[0]

for i, string in enumerate(strings):
 # TODO: Fill out this loop

print(f"The longest string is {longest_str} at index {index}")

Enumeration Practice

5

We can apply loops to pen-draw!

Consider gradient.py

import penndraw

penndraw.set_pen_color(233, 15, 75)
penndraw.filled_rectangle(0.5, 0.1, 0.5, 0.1)

penndraw.set_pen_color(233, 43, 88)
penndraw.filled_rectangle(0.5, 0.30, 0.5, 0.1)

penndraw.set_pen_color(233, 71, 101)
penndraw.filled_rectangle(0.5, 0.5, 0.5, 0.1)

penndraw.set_pen_color(233, 99, 114)
penndraw.filled_rectangle(0.5, 0.7, 0.5, 0.1)

penndraw.set_pen_color(233, 127, 127)
penndraw.filled_rectangle(0.5, 0.9, 0.5, 0.1)

penndraw.run()

Applying Loops

to PennDraw

6

penndraw.set_pen_color(233, 15, 75)
penndraw.filled_rectangle(0.5, 0.1, 0.5, 0.1)

penndraw.set_pen_color(233, 43, 88)
penndraw.filled_rectangle(0.5, 0.30, 0.5, 0.1)

penndraw.set_pen_color(233, 71, 101)
penndraw.filled_rectangle(0.5, 0.5, 0.5, 0.1)

penndraw.set_pen_color(233, 99, 114)
penndraw.filled_rectangle(0.5, 0.7, 0.5, 0.1)

penndraw.set_pen_color(233, 127, 127)
penndraw.filled_rectangle(0.5, 0.9, 0.5, 0.1)

The "green" value of the color increases by 28 with each repeated chunk,

so we could represent it with a formula in terms of , the iteration number:

Looping in PennDraw

7

penndraw.set_pen_color(233, 15, 75)
penndraw.filled_rectangle(0.5, 0.1, 0.5, 0.1)

penndraw.set_pen_color(233, 43, 88)
penndraw.filled_rectangle(0.5, 0.30, 0.5, 0.1)

penndraw.set_pen_color(233, 71, 101)
penndraw.filled_rectangle(0.5, 0.5, 0.5, 0.1)

penndraw.set_pen_color(233, 99, 114)
penndraw.filled_rectangle(0.5, 0.7, 0.5, 0.1)

penndraw.set_pen_color(233, 127, 127)
penndraw.filled_rectangle(0.5, 0.9, 0.5, 0.1)

(L13) Give similar formulae in terms of for the "blue"

value of the color and the y-position of the rectangle.

Looping in PennDraw

8

penndraw.set_pen_color(233, 15, 75)
penndraw.filled_rectangle(0.5, 0.1, 0.5, 0.1)

penndraw.set_pen_color(233, 43, 88)
penndraw.filled_rectangle(0.5, 0.30, 0.5, 0.1)

penndraw.set_pen_color(233, 71, 101)
penndraw.filled_rectangle(0.5, 0.5, 0.5, 0.1)

penndraw.set_pen_color(233, 99, 114)
penndraw.filled_rectangle(0.5, 0.7, 0.5, 0.1)

penndraw.set_pen_color(233, 127, 127)
penndraw.filled_rectangle(0.5, 0.9, 0.5, 0.1)

How can we write this to use a loop instead? (C14)

for i in range(0, 5):
 # TODO

Looping in PennDraw

9

When we run a program we usually type something like

python my_program.py

We can then send additional information to the program via input() , but we can also

specify some information when we run the program through "Command Line Arguments".

This means we could type something like

python greeting.py Harry

to specify some information at the same time as we start the program.

Command Line Args

10

We can import sys and use sys.argv to get command line args

Consider the file args.py

import sys
print(sys.argv)

Run with:

python args.py Joel Ra mir ez

prints: ['args.py', 'Joel', 'Ra', 'mir', 'ez']

Note: argv has EVERYTHING after python in the commnad. Also note that

it is a list of strings, if we want other types we have to explicitly convert.

sys.argv

11

Consider we have the following program called greeting_argv.py .

import sys

print("Hello, " + sys.argv[1] + "!")

And we run it with the command: python greeting_argv.py Harry

then we will get Hello, Harry!

Command Line Args

12

Consider we have the following program called greeting_argv.py .

import sys

print("Hello, " + sys.argv[1] + "!")

And we run it with the command: python greeting_argv.py Harry

then we will get Hello, Harry!

What if we just did python greeting_argv.py?

Traceback (most recent call last):
 File "/some_path/greeting_argv.py", line 3, in <module>
 print("Hello, " + sys.argv[1] + "!")
IndexError: list index out of range

Command Line Args

13

On computers we have things called files.

Files are where we store information that the computer can still access even after the

computer turns off and on again.

We have already use files before, our programs are stored in .py files.

When we run the program, the computer reads the specified .py file

For now, we can assume that the contents of files are all characters. For text

files like these, we think of files as being made of a "sequence" of lines of text.

Is there anybody # first line
 # second line
out there? # third line

Files

14

To read a file, we need to create a file "object" associated with that file.

We can create a variable holding a file object with the open() call.

opens the file "filename.txt" with "r" (Reading) enabled
example_file = open("filename.txt", "r")

When we are completely done with a file, we need to close it

example_file.close()

What do we do in between the opening and closing?

open() and close()

15

Once we have an open file object, we can use readline() to read a line from the file.

print_first_three_lines.py

import sys

my_file = open(sys.argv[1], "r")
for i in range(3):
 line = my_file.readline()
 print(line)
my_file.close()

The next time we call readline() we get the next line of

the file. These File objects remembers our position in the file.

DEMO: python first_three_lines.py hello.txt

readline()

16

We can use the .strip() function on a string to remove any leading or trailing white space.

Whitespace characters are characteres that just add

"spacing" but don't display like typical chraracters.

Whitespace characters: tab ('\t'), space (' '), newline ('\n')

readline() returns a line from a file, with the newline character

('\n') at the end. We can remove this newline if we call strip() :

line = my_file.readline().strip()

strip()

17

What if we want to get all the "words" that make-up a string?

The split function returns a list of strings containing

all the words that have whitespace between them.

line = "I am 2 late"
tokens = line.split()
print(line) # ["I", "am", "2", "late"]

Note how all the elements are still strings!

split()

18

Assume we have a file named beep.boop with the layout:

this file has 3 lines after this
line 0
line 1
line 2

Please write some code that can read a file like this and print out all the lines but the first.

You should use readline() and assume that the file can have any number instead of 3 .

(C16)

Practice:

You should probably use: open(filename, "r") , file.readline() ,

file.close() , string.strip() , string.split()

19

Reminder:

There is another check-in due before lecture as always.

I have Office Hours later this afternoon and on Monday mornings

Joel has OH on Mondays and Wednesdays @ 4pm

HW01 is due tonight (2/5) at 11:59pm

Expect HW02 to be released early tomorrow

Friday's check-in will have an "exit-ticket" for you

to submit questions and metrics about the course.

20

strings = ["My", "Anti", "Aircraft", "Friend"]

index = 0
longest_str = strings[0]

for i, string in enumerate(strings):
 if len(string) > len(longest_str):
 index = i
 longest_str = string

print(f"The longest string is {longest_str} at index {index}")

Enumeration Practice Answers

21

	Loops, Command Line Args & File Reading! (Lecture)
	For Loops
	Review: For Loops
	For Loop Practice
	Review: For Loops w/ enumerate()
	Enumeration Practice
	Applying Loops to PennDraw
	Looping in PennDraw
	Looping in PennDraw
	Looping in PennDraw
	Command Line Args
	sys.argv
	Command Line Args
	Command Line Args
	Files
	open() and close()
	readline()
	strip()
	split()
	Practice:
	Reminder:
	Enumeration Practice Answers

