
CIS 1100
Requesting Websites Python

Fall 2024
University of Pennsylvania

1

Rotten Tomato Top 300 Movies:

<table class="aligncenter" style="width: 75%; padding: 8px">
 <tr style="height: 23px; border: 1px solid #dddddd">
 <td style="width: 10%; height: 23px; text-align: center">1.</td>
 <td style="width: 500px; height: 23px; border: 1px solid #dddddd">
 <p class="apple-news-link-wrap movie">

 99%

 L.A. Confidential
 (1997)

 </p>
 </td>
 </tr>

Last lecture, we saw how to parse a table in HTML if we had the file downloaded
on our computer. Today, we'll go ahead fetch and parse tables like this directly
from the web instead of from a local file by using the requests library!

Review: From Last Time

2

pip install requests to get access to a library that allows you to:

requests

programmatically "visit" websites

get responses (HTML) within your program

do all kinds of advanced stuff like upload information to servers or communicate with APIs

3

The Very Very Very Basics
get("my.url.com") queries the website at that URL and returns a Response

A Response is a dense object that contains
information about what the remote server "said"

response code: a number that indicates whether your request was processed properly

information about the data encoding

the text of the response, i.e. some/all the HTML (or JSON...)

4

import requests

url = "https://www.cis.upenn.edu/~cis110/current/py/homework/homework.html"
r = requests.get(url)
print(r)

<Response [200]>

A Minimal Request

5

import requests

url = "https://www.cis.upenn.edu/~cis110/current/py/homework/homework.html"
r = requests.get(url)
print(r.text)

r.text is just a string containing HTML, though. We know what to do with that...

A Minimal Request

6

import requests
from bs4 import BeautifulSoup

url = "https://www.cis.upenn.edu/~cis110/current/py/homework/homework.html"
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
links = soup.table.find_all('a')
print([link.text for link in links])

['Hello, World!', 'Rivalry', 'Personality Quiz', 'Hail, Caesar!', 'Restaurant Recommendations']

A Minimal Request

7

Complete the snippet of code so that we download the HTML for the
URL below and parse its contents into a BeautifulSoup soup object.

import requests
from bs4 import BeautifulSoup

url = "https://editorial.rottentomatoes.com/guide/best-movies-of-all-time/"

soup = BeautifulSoup(......)

Practice: (L11)

8

Code snippet where we parsed a single table.

soup = BeautifulSoup(file, "html.parser")
rows = soup.find_all("tr")

movies = []
for elem in rows:
 movie = dict()
 movie["title"] = elem.a.string
 movie["year"] = elem.find("span", class_ = "year").string.strip()[1:5]
 movie["score"] = elem.strong.string
 movie["link"] = elem.a["href"]
 movies.append(movie)
#saving list of movie dictionaries as csv!
df = pd.DataFrame(movies)
df.to_csv("movies.csv", index = False)

Last time, we used this code to loop through a single movie table and save the
data to a CSV file called movies.csv. If you're unclear about this code, ask a TA!

Code from Last Time

9

<html lang="en-US" class="hitim">
<html>
 <head></head>
 <body>
 <table class="aligncenter" style="width: 75%; padding: 8px">
 <tr style="height: 23px; border: 1px solid #dddddd">
 <td style="width: 10%; height: 23px; text-align: center">1.</td>
 <td style="width: 500px; height: 23px; border: 1px solid #dddddd"></td>
 </tr>
 <!-- More Movie Rows -->
 </table>
 <!-- More Movie Tables -->
 </body>
</html>

Practice (C12): Full HTML Document

Given the full HTML document:
Put all the tables that contain movies into a list. Hint: do they have a specific attribute?

Modify last lecture’s code (see next slide), loop through
all the movies on the site and save them to a CSV file. 10

If we need to get HTML from hundreds of websites, making a new request each time
can be slow and inefficient.

Wouldn't it be easier if we could just save the HTML once and reuse it?

url = "www.someurlhere.com"
response = requests.get(url)
html_text = response.text

file = open("myhtml.html", "w")
file.write(html_text)
file.close()

Extra: Why request every time?

Instead of requesting the HTML again, next time, you can just open and read the contents
of the file myhtml.html.

11

Sometimes the HTML you get from requests looks very
different from what you see in your browser. Why is that?

Your browser does a lot more than just load HTML — it also
- Runs JavaScript, which can change the page after it's loaded.
- It also pulls in extra content from other sources (like ads or pop-ups).

When you use requests, you’re only getting the raw HTML; and that's
why there's no ads in the HTML even if you open it using a browser.

Extra: Why does my HTML look different?

12

Sometimes a website's HTML looks almost empty
because most of its content is loaded dynamically.

In these cases, requests and BeautifulSoup won’t be enough.

The solution is to use the Selenium library, which gives you a
webdriver—a tool that can simulate everything a real browser does.

With Selenium, you can simulate things like:

Extra: What do we do if the website is bare?

Page navigation

Clicking buttons and links

Filling out forms

Waiting for elements to load

Running JavaScript and seeing the updated page 13

