CIS 1100

Functional Programming Python

in Python (Cont.) rall 2024 .
_ University of Pennsylvania

& Recursion Start

Reminders: HWO06

We were a bit unclear about HWO06 being due
(with no further late tokens usable) last Friday.

1. Anyone can use HW6 as their dropped assignment independent of the score that you
receive on it. Of course, you should still try to complete it if you have time. It will help
you understand things and give you more practice on testable topics. To that end...

2. We will reopen HW6 submissions on 11/18 and 11/19 only. This is right before your
exam, and so anyone who got all or most of the way through HW6 already should
absolutely use the time to just study for the exam instead of submitting things.

Reminders: HWO07

HWO7 is still due on Wednesday with normal late token policy
HWO?7 is still due on Wednesday with normal late token policy
HWO?7 is still due on Wednesday with normal late token policy
HWO?7 is still due on Wednesday with normal late token policy
HWO?7 is still due on Wednesday with normal late token policy

Reminder: Recitations

In observance of Election Day, recitation Iis canceled on Tuesday, 11/5.
Monday recitation (11/4) will be held as normal, but attendance is optional.

If you can't make your recitation feel free for this week to attend another open Monday
recitation (211, 212; locations on the website). Additionally, we will host an optional
recitation on Tuesday night from 8-9:30 p.m. in Berger Auditorium (in Skirkanich).

Review:

We covered three general purpose higher-order functions:
e filter

e map

e reduce

and a new language feature: lambda

Why?

Why are we talking about Higher Order Functions (HOF)?

It turns out that a LOT of problems we want to solve in computer science can reduce down
to one of the three funnctions we have shown

e filter
e map (sometimes called transtform)

« reduce (sometimes called fold, accumulate, aggregate or other terms)

These are sort of "fundamental” patterns in computer
science, showing up in many programming languages.

If you want to take more CIS courses (e.g. CIS 1200) then this is a core topic.

Applying Higher Order
Functions to past problems

Remember the caesar homework?
We wrote a function called string to_symbol 1list() thattook a string and returned a
list but all characters were converted to symbols. ord (charater) - 65

What does this sound like?

Try implementing it with a higher order function (L11):

def string to_symbol list(string):
TODO

Applying HOF to Caesar

def shift(symbol, n):
return (symbol + n) % 26 1f 0 <= symbol <= 25 else symbol

assume n° 1s the amount we want to shift each symbol by
def encrypt(to_encode, n):

symbols = string to_symbol list(to_encode)
TODO: put something here
return symbol 1list to_string(symbols)

Which of these would work for encrypt? (M6)

e (A) symbols = list(map(shift, symbols))
e (B) symbols

list(map(lambda char : shift(char, n), symbols))
e (C) symbols = list(map(shift(n), symbols))
e (D) symbols = list(reduce(shift, symbols, []))

(Bonus: When we implement symbol _list to_string, which HOF will we need?)

Practice Code writing!

Given a list of characters, take only the ones which are singular lowercase letters and

mash them up into character*3 in a string. e.g. [a,A,B,c,b,travis] becomes "aaacccbbb".

(C12)

Applied to more
complex structures

Remember the structure we used in the check-In?

We asked you to implement the det

get test names(autograder results):
which got a list of all tests in that structure.

Which higher order functions would apply here?

Applied to more
complex structures

Remember the structure we used in the check-In?

We asked you to implement the det

get test names(autograder results):
which got a list of all tests in that structure.

If we used HOF we could do:

def get_test_names(autograder_results):
return list(map(lambda test : test['name'], autograder_results['tests']))

10

Applied to more
complex structures

Remember the structure we used in the check-In?

We asked you to implement the det

get_failing_test_names(autograder_resu

1ts) : which got a list of all failing tests in that
structure.

(e.q. the status was "failed")

How would we do it with HOF?
(C14)

11

CIS 1100

Recursion Start Python
Fall 2024

University of Pennsylvania

Recursive Thinking

The journey of a thousand miles starts with one mile.
And then a journey of 999 miles.

12

Recursive Thinking

A function is recursive If it invokes itself to do part of its work.

Recursion is a problem-solving approach that can be used to generate simple
solutions to certain kinds of problems that are difficult to solve by other means.

Recursion reduces a problem into one or more simpler versions of itself.

13

Recursion

An alternate to using loops for solving problems

The core of recursion is taking a big task and breaking it up into a series of related small
tasks.

 Example: handing out papers for an exam

o |terative: have a TA walk down a row of students, giving each person an exam

o Recursive: A student takes one exam, pass the rest down the aisle

 Example: Which row are you in?

14

Breaking up a large problem

We want to write a program that prints N stars on one line, but without loops.

def print _stars(N):

Here's

orint _stars(N) ---> print stars(l) + print stars(N - 1)
orint stars(3) ---> print stars(l) + print stars(2)
orint _stars(2) ---> print stars(l) + print stars(l)
orint _stars(l) ---> print("x");

Anatomy of a Recursive Function

Every recursive function needs at least one base case and at least one recursive part.
The base case:

e handles a simple input that can be solved without resorting to a recursive
call. Can also be thought of as the case where we "end” our recursion.

The recursive part:

e contains one or more recursive calls to the function.

e |n every recursive call, the parameters must be in some
sense "closer" to the base case than those of the original call

16

Writing our print_stars function:

def print stars(N):

if (N == 0): # Base case
do nothing
return

else: # Recursive case
print("*x")

print_stars(N - 1)

17

Practice: Tracing

What would calling mystrery(5) do?

(C16)
def mystery(N):
if (N == 0):
print("|/") # prints |/
else:
space = " " x N # should be a string with N spaces

print(f"|{space}t/")
mystery (N - 1)

(L13) what would be an appropriate name for the function and it's parameters?

18

Practice: Tracing

What would this version of mystery do?

(L15)
def mystery(N):
if (N == 0):
print("|\\") # prints |\
else:
space = " " x* N # should be a string with N spaces

mystery(N - 1)
print(£"|ispacet\\") # print AFTER recursive call

Previously this was before the recursive call

19

