
CIS 1100 — Fall 2024 — Practice Exam

Full Name: ___

PennID (e.g. 12345678): ____________________________________

My signature below certifies that I have complied with the University of
Pennsylvania’s Code of Academic Integrity in completing this examination.

______________________________ __________________________

Signature Date

Instructions are below. Not complying will lead to a 0% score on the exam.

● Do not open this exam until told by the proctor.

● You will have exactly 60 minutes to take this exam.

● Make sure your phone is turned OFF (not on vibrate!) before the exam starts.

● Food and gum are not permitted—don’t be noisy or messy.

● You may not use your phone or open your bag for any reason, including to retrieve or put
away pens or pencils, until you have left the exam room.

● This exam is closed-book, closed-notes, and closed computational devices.

● If you get stuck on a problem, it may be to your benefit to move on to another question
and come back later.

● All code must be written in proper Python format, including all curly braces and
semicolons.

● Do not separate the exam pages. Do not take any exam pages with you. The entire exam
packet must be turned in as is.

● Only answers on the FRONT of pages will be graded. There are two blank pages at the
end of the exam if you need extra space for any graded answers.

● Use a pencil, or blue or black pen to complete the exam.

● If you have any questions, raise your hand and a proctor will come to you.

● When you turn in your exam, you may be required to show your PennCard. If you forgot to
bring your ID, talk to an exam proctor immediately.

● We wish you the best of luck!

Q1 Q2 Q3 Q4 Q5 Q6 (bonus)

Q1. Types Fill In The Blank

In the column marked “Type,” choose the type (int, float, bool, str, list, set, tuple,

range) for the expression, or write "error" if there is an error in the expression. You do not need to
write the value of the expression. In cases where multiple answers are possible, any of them will be

accepted.

Statement Type

"yes" + "45" str

5 > 8 > 6 bool

ord("apple"[0]) - 45 int

True and 3 < 4 and not "yes" == "no" bool

sys.argv list

"pearson"[2:7] str

[""] list

range(10)[10] error

Q2. Values Fill In the Blank

Write the value that gets printed, or write "error" if there is an error during the execution of these
lines of the program.

Question 2.1

print(int("4") % 3)

Answer: 1

Question 2.2

x = [1, 2, 3]

x[len(x) - 1] = x[len(x) - x[0]] - x[1]

print(x[2])

Answer: 1

Question 2.3
s = {1, 2, 3}

print(s[3])

Answer: error

Question 2.4

print("10" + "20")

Answer: 1020

Question 2.5

numbers = [4, 2, -1]

x = 1

for num in numbers:

x = x * numbers

print(x)

Answer: error

Q3. Tracing

Here's a python file that features a few functions.

def func_three(x, y):

print(f"func_three arguments: x={x}, y={y}")

result1 = x * 3

result2 = y * 2

final_result = result1 + result2

print(f"func_three returning: {final_result}")

return final_result

def func_two(num):

print("func_two argument: num=" + str(num))

result = num * 2

print("funct_two returning: " + str(result))

return result

def func_one(a, b):

print(f"func_one arguments: a={a}, b={b}")

result1 = a + b

result2 = func_two(result1)

result3 = func_three(a, b)

final_result = result2 - result3

print(f"func_one returning: {final_result}")

return final_result

def main():

print("Starting main")

x = 10

y = 5

z = func_one(y, x)

print("The final result is: " + str(z))

if __name__ == "__main__":

main()

When the program is run as python tracing_exercise.py, eight lines are printed. For each of the

following lines, fill in the blanks in the “Printed Line” column (on the next page) to show what values

the variables have when they are printed out. Also, mark the order in which they are printed in the

“Order” column starting at 1. The order for the first line is marked for you.

Printed Line Order

Starting main 1

The final result is: -5 8

func_one arguments: a=5, b=10 2

func_one returning: -5 7

func_two argument: num=15 3

func_two returning: 30 4

func_three argument: x=5, y=10 5

func_three returning: 35 6

Q4. Complete the Program: clock.py

The following program is supposed to print out a time readout every fifteen minutes over the course

of one day, starting with 12:00 AM, then 12:15 AM, then 12:30 AM and so on. Times in the second half

of the day should be printed using the 12-hour clock, meaning that the full set of printed times should

include 96 timestamps and should match the format & pattern shown in the following example:

12:00 AM

12:15 AM

12:30 AM

12:45 AM

1:00 AM

... // ellipses are not printed literally;

11:30 AM // they are here only for abbreviation.

11:45 AM

12:00 PM

12:15 PM

...

11:45 AM

Help write this clock program by filling in the blanks in the program on the next page.

for hour in range(_BLANK_0_):

for minute in range(0, 60, _BLANK_1_):

if _BLANK_2_ or hour == 12:

hour_to_print = "12"

else:

hour_to_print = str(hour % _BLANK_3_)

if minute == 0:

minute_to_print = ":00"

else:

minute_to_print = ":" + str(minute)

if _BLANK_4_:

suffix = "AM"

else:

suffix = "PM"

print(hour_to_print + minute_to_print + " " + suffix)

Blank # Code

0 24

1 15

2 hour == 0

3 12

4 hour < 12

Q5. Coding: Password Hygiene

A password can be represented by a str. A password is said to be strong if it contains an uppercase
letter (a letter between 'A' and 'Z'), a lowercase letter (a letter between 'a' and 'z'), and a digit (a letter

between '0' and '9'). A password is said to be valid if it does not contain any forbidden characters: ' '
(a space) or '-' (a hyphen). Finally, a password is good if it is both strong and valid. Write the following
three functions: is_strong, positions_of_invalid_chars, and is_good. Note the function

headers & signatures for each that describe how they should behave: your functions need to return

values of the correct types to receive credit! Your implementation of is_good must be completed in

one line to receive credit, although you can still get credit for is_good even if your other functions

are not correctly implemented.

Question 5.1

def is_strong(password):

"""

Input: a string representing the password to test

Output: True if the password is considered "strong"

and false otherwise.

A password is "strong" if it contains an uppercase

letter, and a lowercase letter, and a digit character.

"""

lower = False

upper = False

digit = False

for c in password:

if c.islower(): # 'a' <= c <= 'z' also works

lower = True

if c.isupper(): # 'A' <= c <= 'Z' also works

upper = True

if c.isdigit(): # '0' <= c <= '9' also works

digit = True

return lower and upper and digit

Question 5.2

def positions_of_invalid_chars(password):

"""

Input: a string representing the password to test

Output: a list containing the indices of all invalid characters,

which are either ' ' or '-'.

positions_of_invalid_chars("finePassword") → []

positions_of_invalid_chars("harry-smith") → [5]

positions_of_invalid_chars("i love-you") → [1, 6]

positions_of_invalid_chars("- - -") → [0, 1, 2, 3, 4]

"""

bad_positions = []

for i, c in enumerate(password):

if c == ' ' or c == '-':

bad_positions.append(i)

return bad_positions

return [i for i, c in enumerate(password) if c in ' -'] also works

Question 5.3

def is_good(password):

"""

Input: a string representing the password to test

Output: true if the password is both strong and valid, false otherwise.

A password is good if it is both strong and valid. Use the previous two

functions you wrote to complete this one in **one line only!**

"""

return is_strong(password) and positions_of_invalid_chars(password) == []

OR

return is_strong(password) and len(positions_of_invalid_chars(password)) ==

0

OR

return is_strong(password) and not positions_of_invalid_chars(password)

