
Sorting

CIS 1100 Spring 2024 @ University of Pennsylvania

Overview

We spend a lot of time sorting things

it makes searching easier

many problems in computer science are functionally just searching problems

In this module, we will learn about how to sort elements stored inside an array

Example:

Sort the cats stored inside an array by their name alphabetically

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 1

Note
Additionally, it is also an interesting peek/intro into one of the core pillars of computer science, algorithms and run time efficiency.

Learning Objectives

To be able to use insertion sort to sort elements inside an array

To be able to use selection sort to sort elements inside an array

To be able to use Java methods to sort an array or a list

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 2

MergeSort

We'll study two sorting algorithms today: Insertion Sort and Selection Sort.

In recitation, we'll reference MergeSort, which is a recursive sorting algorithm that

usually runs faster than Insertion or Selection Sort. It is not considered testable

material for this course, and is only included for your reference.

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 3

Insertion Sort: High Level View

Maintain a sorted sub-section of the array starting at the beginning

This section doesn’t account for elements outside of the section

This section starts as just the first element

Continually add the next element of overall array to the sorted sub-section, shifting

the elements in the subsection to maintain order

After transfering the last unsorted element to the sorted subsection and adjusting

it, sorting is done!

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 4

Insertion Sort

Insertion sort compares the first two elements and put them in order

Insertion sort then takes the third element and put it into the right position with

respect to the first two

Insertion sort then takes the fourth element and put it into the right position with

respect to the first three

And so on, until the entire array is sorted

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 5

Insertion Sort

20 10 15 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 6

Insertion Sort

We start to process index 1

20 10 15 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 7

Insertion Sort

We add 10 to the sorted sub-section. To do so, we swap 10 and 20 since 10 < 20

Since there are no elements smaller than 10 in the sub-section, we are done processing

10 and can move on to the next element.

10 20 15 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 8

Insertion Sort

We start to process index 2

10 20 15 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 9

Insertion Sort

We compare 15 to 20 and swap them since 15 < 20

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 10

Insertion Sort

We compare 15 to the value at index 0

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 11

Insertion Sort

We compare 15 to the value at index 0

Since 10 < 15, we don’t swap.

We can now consider 15 as "integrated" into the sorted subsection

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 12

Insertion Sort

We start to process index 3

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 13

Insertion Sort

We compare 54 to the value at index 2

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 14

Insertion Sort

We compare 54 to the value at index 2

Since 20 < 54, we don’t swap.

We can now consider 54 as "integrated" into the sorted subsection

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 15

Insertion Sort

We start to process index 4

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 16

Insertion Sort

We compare 55 to the value at index 3

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 17

Insertion Sort

We compare 55 to the value at index 3

Since 54 < 55, we don’t swap.

We can now consider 55 as "integrated" into the sorted subsection

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 18

Insertion Sort

We start to process index 5

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 19

Insertion Sort

We compare 11 to the value at index 4

10 15 20 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 20

Insertion Sort

We compare 11 to the value at index 4

Since 11 < 55, we swap

10 15 20 54 11 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 21

Insertion Sort

We compare 11 to the value at index 3

Since 11 < 54, we swap

10 15 20 11 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 22

Insertion Sort

We compare 11 to the value at index 2

Since 11 < 20, we swap

10 15 11 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 23

Insertion Sort

We compare 11 to the value at index 1

Since 11 < 15, we swap

10 11 15 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 24

Insertion Sort

We compare 11 to the value at index 0

Since 10 < 11, we stop and consider the sub-section sorted

10 11 15 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 25

Insertion Sort

We start to process index 6

10 11 15 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 26

Insertion Sort

We compare 78 to the value at index 5

10 11 15 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 27

Insertion Sort

We compare 78 to the value at index 5

Since 55 < 78, we don’t swap.

We can now consider 78 as "integrated" into the sorted subsection

10 11 15 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 28

Insertion Sort

We start to process index 7

10 11 15 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 29

Insertion Sort

We compare 14 to the value at index 6

10 11 15 20 54 55 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 30

Insertion Sort

We compare 14 to the value at index 6

Since 14 < 78, we swap the values

10 11 15 20 54 55 14 78

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 31

Insertion Sort

We compare 14 to the value at index 5

Since 14 < 55, we swap the values

10 11 15 20 54 14 55 78

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 32

Insertion Sort

We compare 14 to the value at index 4

Since 14 < 54, we swap the values

10 11 15 20 14 54 55 78

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 33

Insertion Sort

We compare 14 to the value at index 3

Since 14 < 20, we swap the values

10 11 15 14 20 54 55 78

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 34

Insertion Sort

We compare 14 to the value at index 2

Since 14 < 15, we swap the values

10 11 14 15 20 54 55 78

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 35

Insertion Sort

We compare 14 to the value at index 1

Since 11 < 14, we stop

Since 14 was the last value, the array is now sorted

10 11 14 15 20 54 55 78

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 36

Insertion Sort: Summary

For each unsorted element, swap current element with its predecessor, if out of order.

Repeat until the array is sorted.

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 37

Insertion Sort

public static void insertionSort(Comparable[] array) {
 for (int i = 1; i < array.length; i++) {
 for (int j = i; (j > 0) && (array[j].compareTo(array[j-1]) < 0); j--) {
 Comparable temp = array[j];
 array[j] = array[j-1];
 array[j-1] = temp;
 }
 }
}

Why does the outer loop start at 1?

Why does the inner loop start at i?

Why does the inner loop have the continuation condition (j > 0) &&
(array[j].compareTo(array[j-1]) < 0)?

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 38

Note
Note that the inner loop does NOT start at 0, and doesn’t iterate through the entire array

Insertion Sort

public static void insertionSort(Comparable[] array) {
 for (int i = 1; i < array.length; i++) {
 for (int j = i; (j > 0) && (array[j].compareTo(array[j-1]) < 0); j--) {
 Comparable temp = array[j];
 array[j] = array[j-1];
 array[j-1] = temp;
 }
 }
}

The first element is always sorted with respect to itself.

We want to compare the first unsorted element to sorted elements only.

We can stop as soon as we find an element that is smaller than the unsorted

element. All other elements to the left will also be smaller.

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 39

Note
Note that the inner loop does NOT start at 0, and doesn’t iterate through the entire array

Poll:

Poll:

If we are doing Insertion Sort an array of size 5, what is the least number of

comparisons that could be done during the sort?

public static void insertionSort(Comparable[] array) {
 for (int i = 1; i < array.length; i++) {
 for (int j = i; (j > 0) && (array[j].compareTo(array[j-1]) < 0); j--) {
 Comparable temp = array[j];
 array[j] = array[j-1];
 array[j-1] = temp;
 }
 }
}

What would the input array look like to cause this case?

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 40

Poll:

Poll:

If we are doing Insertion Sort an array of size 5, what is the least number of

comparisons that could be done during the sort? Four.

public static void insertionSort(Comparable[] array) {
 for (int i = 1; i < array.length; i++) {
 for (int j = i; (j > 0) && (array[j].compareTo(array[j-1]) < 0); j--) {
 Comparable temp = array[j];
 array[j] = array[j-1];
 array[j-1] = temp;
 }
 }
}

What would the input array look like to cause this case? A sorted array!

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 41

Poll:

If we are doing Insertion Sort an array of size 5, what is the MOST number of

comparisons that could be done during the sort?

public static void insertionSort(Comparable[] array) {
 for (int i = 1; i < array.length; i++) {
 for (int j = i; (j > 0) && (array[j].compareTo(array[j-1]) < 0); j--) {
 Comparable temp = array[j];
 array[j] = array[j-1];
 array[j-1] = temp;
 }
 }
}

What would the input array look like to cause this case?

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 42

Poll:

If we are doing Insertion Sort an array of size 5, what is the MOST number of

comparisons that could be done during the sort? Ten.

public static void insertionSort(Comparable[] array) {
 for (int i = 1; i < array.length; i++) {
 for (int j = i; (j > 0) && (array[j].compareTo(array[j-1]) < 0); j--) {
 Comparable temp = array[j];
 array[j] = array[j-1];
 array[j-1] = temp;
 }
 }
}

What would the input array look like to cause this case? An array that is in

descending order.

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 43

Selection Sort

Find the i th smallest value, and put it at index i .

Selection sort finds the smallest element in the array and place it at position 0

then finds the smallest element in the array starting at index 1, and places it at

position 1

then finds the smallest element in the array starting at index 2, and places it at

position 2

And so on, until the entire array is sorted

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 44

Selection Sort

Start by trying to find the index of the smallest value

20 10 15 54 55 11 78 14

0 1 2 3 4 5 6 7

Index of smallest value: 1

Destination Index: 0

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 45

Selection Sort

Once the index of smallest is found. Swap it with index 0

10 20 15 54 55 11 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 46

Selection Sort

Find the next smallest value of the array

10 20 15 54 55 11 78 14

0 1 2 3 4 5 6 7

Index of smallest value: 5

Destination Index: 1

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 47

Selection Sort

Once the next smallest is found, swap it with index 1

Repeat until the (length-1)th smallest value is found and swapped

(We've only sorted two elements—six more to go!)

10 11 15 54 55 20 78 14

0 1 2 3 4 5 6 7

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 48

Selection Sort

Selection Sort

We initialize the position of the smallest element

We update indexOfSmallest if we found a smaller element

We place the smallest element at the right position

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 49

Selection Sort Code

public static void selectionSort(String[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 int indexOfSmallest = i;
 for (int j = i + 1; j < array.length; j++) {
 if (array[j].compareTo(array[indexOfSmallest]) < 0) {
 indexOfSmallest = j;
 }
 }
 String temp = array[indexOfSmallest];
 array[indexOfSmallest] = array[i];
 array[i] = temp;
 }
}

Why do we stop the outer loop at array.length - 1?

Why do we start the inner loop at i + 1?

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 50

Selection Sort Code

public static void selectionSort(String[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 int indexOfSmallest = i;
 for (int j = i + 1; j < array.length; j++) {
 if (array[j].compareTo(array[indexOfSmallest]) < 0) {
 indexOfSmallest = j;
 }
 }
 String temp = array[indexOfSmallest];
 array[indexOfSmallest] = array[i];
 array[i] = temp;
 }
}

There's no need to "sort" the last element—it'll just be the biggest.

The sorted portion of the array can always be found up to position i , and we start

indexOfSmallest at position i .

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 51

Poll:

If we are doing Selection Sort an array of size 5, what is the least number of

comparisons that could be done during the sort? What would the input array look like?

public static void selectionSort(String[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 int indexOfSmallest = i;
 for (int j = i + 1; j < array.length; j++) {
 if (array[j].compareTo(array[indexOfSmallest]) < 0) {
 indexOfSmallest = j;
 }
 }
 String temp = array[indexOfSmallest];
 array[indexOfSmallest] = array[i];
 array[i] = temp;
 }
}

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 52

Sorting an Array: The Easy Way

These sorting algorithms are actually rather slow in practice. Java's built-in

Arrays.sort() and Collections.sort() (for Lists) are much faster.

refer to previous slide deck for examples of how to use

these methods use Timsort, which is like a hybrid of Insertion and Merge sort.

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 53

public class Party implements Comparable<Party> {
 private int partyHats;
 private String theme;
 private int numGuests;

 public Party(int partyHats, String theme, int numGuests) {
 this.partyHats = partyHats;
 this.theme = theme;
 this.numGuests = numGuests;
 }

 public int getPartyHats() {
 return partyHats;
 }

 public String getTheme() {
 return theme;
 }

 public int getNumGuests() {
 return numGuests;
 }

 public int compareTo(Party other) {
 if (numGuests == other.getNumGuests) {
 if (numGuests > 20) {
 if (partyHats == other.getPartyHats()) {
 return theme.compareTo(other.getTheme());
 } else {
 return partyHats - other.getPartyHats();
 }
 } else {
 if (theme.equals(other.getTheme())) {
 return partyHats - other.getPartyHats();
 } else {
 return theme.compareTo(other.getTheme());
 }
 }
 }
 return numGuests - other.getNumGuests();
 }
}

SORTING

CIS 1100 Spring 2024 @ University of Pennsylvania 54

	Sorting
	Overview
	Learning Objectives
	MergeSort
	Insertion Sort: High Level View
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort: Summary
	Insertion Sort
	Insertion Sort
	Poll:
	Poll:
	Poll:
	Poll:
	Selection Sort
	Selection Sort
	Selection Sort
	Selection Sort
	Selection Sort
	Selection Sort
	Selection Sort Code
	Selection Sort Code
	Poll:
	Sorting an Array: The Easy Way

